
Interactive Freeform Editing Techniques

for

Large-Scale, Multiresolution Level Set Models

A Thesis

Submitted to the Faculty

of

Drexel University

by

Manolya Eyiyurekli McCormick

in partial fulfillment of the

requirements for the degree

of

PhD in Computer Science

2012

c© Copyright 2012
Manolya Eyiyurekli McCormick. All Rights Reserved.

Dedications

Canim ablama, huzur icinde yat. 1

1To my beloved sister, may you rest in peace.

Acknowledgements

Sincere thanks to my advisor Dr. David E. Breen for paving the road and guiding me

through it with great dedication. Further gratitude is expressed to all members of my

thesis committee, Dr. David E. Breen, Dr. Ali Shokoufandeh, Dr. William Regli, Dr.

Paul Diefenbach, Dr. Ross Whitaker and Dr. Ko Nishino for their ideas and opinions

that shaped and reshaped my research and this document.

Special thanks to Dr. Ross Whitaker for the use of and his assistance with the

VISPACK library.

I would also like to extend my deepest gratitude to those friends and family who

helped me keep going against all obstacles on the way. Heartfelt thanks to my mom,

dad, sister and brothers for never losing their hope, and always rekindling mine.

Special thanks to John McCormick, Yelena Kushleyeva, Walt Mankowski, Nadya

Sultanik and Linge Bai for taking the time to proof read this work, and for being

such great friends.

Last but certainly not least, I am grateful for having the love and support of John

and Sherlock, who shared a home with a cranky PhD student and never complained.

This research was financially supported by NSF grant CCF-0702441

i

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . xii

1. Introduction . 1

2. The Level Set Method . 10

3. Previous Work . 14

3.1 3D Modeling . 14

3.1.1 Subdivision Surfaces . 14

3.1.2 Volume Sculpting . 15

3.1.3 Volume Deformations . 16

3.1.4 Implicit Modeling . 16

3.1.5 PDE Models . 18

3.2 Sketch-Based Techniques for 3D Modeling. 18

3.2.1 Curve Editing . 20

3.3 Representing and Rendering Large-Scale Volumetric Models. 22

3.3.1 Advanced Level Set Data Structures . 22

3.3.2 Interactive Rendering of Large-Scale Dynamic Point Sets 24

3.3.3 Optimized Spatial Hashing . 25

3.4 Multiresolution Modeling . 26

3.5 Detail Preserving Level Set Method . 28

3.6 Geometric Texture Transfer . 29

4. Interactive Level Set Surface Editing . 31

4.1 3D User Interaction. 35

4.2 Localized Editing of Catmull-Rom Splines. 36

4.2.1 Active Window . 39

ii

4.2.2 Multiresolution Control . 40

4.2.3 Interpolating the Control Point Displacement . 41

4.2.4 Interpolating the Curve Normal . 43

4.2.5 Editing Tangent Vectors At Control Points . 46

4.2.6 Results . 46

4.3 Freeform Editing Operators . 49

4.3.1 Pulling a point, symmetric ROI . 49

4.3.2 Pulling a point, arbitrary ROI . 51

4.3.3 Pulling a curve on the surface, symmetric ROI 52

4.3.4 Pulling a curve on the surface, arbitrary ROI . 54

4.3.5 Surface Detailing/Carving . 55

4.3.6 Interactive Smoothing . 56

4.4 Sketch-based Editing Operators . 58

4.4.1 Sketching a Single Cross section . 58

4.4.2 Multiple Cross Section Curves . 63

4.4.3 Sketching over the surface . 64

4.4.4 Sketching on the Surface . 66

4.4.5 Global Deformations . 68

4.5 Voxels inside an ROI . 69

4.6 Modeling System. 72

4.6.1 Computational Pipeline . 73

4.6.2 Numerical Techniques . 74

4.6.3 The User Interface . 75

4.7 Results . 76

4.8 Discussion . 83

iii

5. Representing High Resolution Level Set Models for Interactive Editing and

Rendering . 87

5.1 Efficient and Dynamic Data Structures for High Resolution Level Set

Models . 87

5.1.1 Voxel Representation . 89

5.1.2 Display Representation . 92

5.2 Local Surface Editing Techniques . 94

5.3 Results . 98

5.4 Discussion . 103

6. Detail Preserving Surface Editing for Multiresolution Level Set Models 110

6.1 Hierarchical Level Set Models. 112

6.2 Multiresolution Surface Modeling with Level Sets . 117

6.3 Detail Preserving Surface Editing . 119

6.3.1 The Advection Method. 119

6.3.2 The Spring Method. 121

6.3.3 The Speed Function . 123

6.3.4 Sampling . 125

6.3.5 Adding the Right Amount of Details . 126

6.4 Geometric Texture Transfers . 127

6.5 Results . 131

6.6 Discussion . 137

7. Conclusions . 142

8. Future Work . 147

iv

List of Tables

4.1 A summary of the freeform editing operators . 59

4.2 Editing details and running times for the final results. Speed is in frames-

per-second (fps). 84

4.3 Running times of a single operation at different resolutions. The number

of voxels within the ROI increases four times every time the radius of the

ROI doubles. Running times are given in frames-per-second (fps). 85

5.1 Statistics for the spatial hash function and hash table. Given are the

number of entries in the hash table (size), and the mean and the standard

deviation of the number of voxels stored in each entry. 103

5.2 Average execution times (in seconds) needed to compute an editing opera-

tion for one display frame during the creation of a variety of model details.

Times are given for an implementation of RLE Sparse Level Sets [Houston

et al., 2004] and our Spatial Hash method. 105

5.3 Statistics for the VBO k-d trees. Given are the standard deviation, min-

imum and maximum sizes of the 32 VBOs used to display the example

models. The average VBO size (percentage of vertices in a single VBO) is

1/32 (0.031). 105

5.4 Number of vertices for each model. 107

5.5 Average frame times (in seconds) needed to remap, transfer graphics data

and draw the VBOs after an editing operation (E). Times (in seconds)

needed to rebuild (R) the VBO k-d tree. Times are given for rendering

with 1, 8, 16, 32, 64 and 128 VBOs. 107

6.1 A comparison of the advection and the spring methods. 141

v

List of Figures

1.1 (a) 3D laser scanner, scanning statue of David. (b)The 3D model recon-
structed from the laser scan data. (Images from the Digital Michelangelo
Project) . 1

1.3 Screenshots of level set models utilized in special effects and animations.
(a) The Sandman in Spider-Man 3. (b) The Tar Monster from Scooby
Doo 2. (c) Terra cotta soldiers from The Mummy: Tomb Of The Dragon
Emperor. (d) The giant maelstrom in Pirates of the Caribbean 3. (e)
Dancers from Bacardi commercial. (f) Clouds from Puss in Boots. 5

1.4 Level set models are used in medical volume segmentation [Breen et al.,
2005]. 6

1.5 Research outline and objectives. 7

4.1 Flowchart of the animation pipeline for doing level set morphing 31

4.2 Using interactive surface editing to control and direct level set morphing. . . 33

4.3 (a) A cartoon bear created with freeform level set surface editing operators.
(b) A rubber duck is created from a level set sphere and a set of sketched
curves. 34

4.4 Changing the active window size. Top: Only the displacement is interpo-
lated. Bottom: Both the displacement and the normals are interpolated.
Left-to-right: Editing with window size = 5 control points. Middle: Edit-
ing with window size = 10. Right: Active window spans the whole curve.
The blue lines show the movement of the control points within the active
window. The red dots are the control points. 40

4.5 Left to right: Linearly decreasing function in Equation 4.1, exponentially
decreasing function in Equation 4.2, sinusoidal function in Equation 4.3
(α = 1.0). Three curves are drawn in each case: Initial curve, local effect
of moving one control point, and the curve after distributing the movement
to all control points. 43

4.6 The result of distributing the displacement of the control point. The same
curve is modified twice by pulling the same control point in two different
directions. Green arrows show displacement of one control point during
editing. 44

vi

4.7 The result of changing α in Equation 4.3. Left to right: α = 0.1, 0.25, 0.5,
0.75, 1.0, 2.0, 3.0, 4.0. 44

4.8 The green arrow represents the editing stroke. Left to right: Linearly
decreasing function in Equation 4.1, exponentially decreasing function in
Equation 4.2, sinusoidal function in Equation 4.3. 45

4.9 Editing tangent vectors at control points. The control points are high-
lighted in red and the tangent vectors are drawn as blue lines. The vectors
are drawn at each control point, and the blue points at the end of each
vector can be picked and modified, resulting in new tangent vectors. Left:
Top to bottom: The original C-R curve, original tangents, modified tan-
gents. Right: The final curve after modifying the tangents, drawn with
and without the control points highlighted. 46

4.10 The rough, non-uniform user input (a-b) is sampled uniformly and smoothed
(c). Pulling the point highlighted in purple outwards creates the nose (d).
The resolution in the active window is increased for further editing. The
tip of the nose is pulled down to create the nose in (e). The active window
boundaries are highlighted in green and blue. The editing is applied to
the point highlighted in purple . 47

4.11 The user works at different resolutions to create the mouth. The active
window boundaries are highlighted in green and blue. The editing is ap-
plied to the point highlighted in purple. The entire curve is resampled in
(e). The final result from sketching a profile is shown in (f).. 48

4.12 The user works at different resolutions to edit the nose. The active window
boundaries are highlighted in green and blue. The editing is applied to
the point highlighted in purple. 48

4.13 A loop is created by clicking and dragging a point on the surface (α = 2.0).
The first two frames demonstrate the use of the helping plane (the yellow
background). The last frame shows several loops smoothly merged with
each other. 50

4.14 Effect of changing the α parameter in Equation 4.5. α = 0.25, 0.5, 0.75,
1.0, 2.0, 3.0, 4.0. 51

4.15 Deforming a patch on the surface by defining an ROI with a boundary
curve and pulling a point. α = 4. ε = 5 voxels. 51

4.16 The α parameter in Equation 4.6 changes the shape of the modification. . . . 53

vii

4.17 A curve with a symmetric ROI is placed on the surface and pulled first
upwards then towards the right. 53

4.18 A patch on the surface, defined by a boundary curve, is raised using a
curve handle. The handle is pulled in an arc towards the right side of the
window. 53

4.19 An example of the surface detailing tool. The two images on the left
consist of offsets on the surface created by continuous cursor strokes (a,
b). The two images on the right demonstrate interactive carving of the
Chinese character for sky (c, d). 55

4.20 Interactive carving as an erasing tool. Frames (a-d) demonstrate the spout
being erased and the last frame (e) shows the final result. 56

4.21 Interactive smoothing on the spout of the teapot model. (a) The initial
scan converted model. (b) Smoothing tool is placed over rough region. (c)
Smoothing has been locally applied. (d) Smoothing completed around the
area where the spout meets the teapot. 57

4.22 Projecting the cross section curve onto the level set surface. The line L
in 3D space is created using the closest points to the end points of Cd on
the surface. Points starting from L move towards Cd and stop once they
reach the surface, creating the projected curve Cs. 60

4.23 Top: Two curves are sketched, one on and one above the surface. The
surface grows to fit to both cross sections. The final result is displayed
with a surface drawn translucently on the right. Bottom: A control point
is modified (left). The surface grows to fit to the modified curve (right). . . . 61

4.24 (a-b) Two curves define the new shape of the nose. (c-d) The surface fits to
these curves. (e) The cross section curve is modified for further refinement
of the final shape. (f) The final result. (Some curvature-based smoothing
is applied later on to produce the final shape of the nose in Figure 4.36).
A point representation of the surface is used in (c) and (e) to provide a
clearer view of the curves and control points. α = 2.0. 62

4.25 One cross section curve is used to create a mohawk for the mannequin
head. (a-b) The initial and the final model. (c-d): Two curves define the
shape of the mohawk. The surface fits to these curves. (e-f): The cross
section curve is modified to further refine the final shape. The surface is
drawn translucently in (c,e,f) to provide a clearer view of the curves and
control points. 63

viii

4.26 Sketching cross section curves over the surface. 65

4.27 Sketching cross section curves on the surface. 67

4.28 Global editing example. The sphere is modified with 4 curves to create a
shamrock. An intermediate step during evolution is shown in top middle
frame and the final result is drawn translucently in top right. The model is
further modified to add a stem in bottom right with a point-based editing
operator. 68

4.29 Pulling on a point, symmetric ROI with a 15 voxel radius. (a-b) The ROI
is calculated by checking every voxel within a 153 bounding box centered
at xs (shown in blue in (a) and (d)). All voxels with a Euclidean distance
of 15 or less to xs are added to the ROI. (c-d) The ROI is calculated using
the sweeping algorithm (Algorithm 1). The pink points in (a) and (d)
represent the voxels in the ROI for each case. Using geodesic instead of
Euclidean distance ensures that only the selected portions of the model
are modified. 71

4.30 Level set surface-editing framework. User input is translated into level set
speed functions. The level set PDE is solved on a portion of the narrow-
band by the VISPACK library, and the resulting edited model is displayed
in the UI. 72

4.31 The computational pipeline. 73

4.32 Lake with unusual inhabitants. The model is created on one side of a box
using several of the level set editing operators. 77

4.33 Cartoon octopus. The body of the octopus is created on one side of a
box using the sketch-based editing operator. The head and the arms are
grown from the body by pulling on points using a symmetrical ROI and
the eyes are carved into the head. 77

4.34 The teapot model is modified to create a decorative two-handle teapot.
The spout and top handle are erased and new handles are added. Edits
are made to one side of the model and a volumetric reflection operator is
used to create the symmetric result. 78

4.35 Cartoon frog. A superellipsoid is used as the initial head model. The
eyes are added by pulling the surface up and the mouth is modeled using
interactive carving. 78

ix

4.36 A fantasy character is created by adding horns and pointy ears to the
mannequin model. The chin, eyes and nose are also modified and hair
detail is added.. 79

4.37 A cartoon bear is created using level set surface editing operators. (a)
The initial body is modeled with the union of two superellipsoids. (b-c)
The bear is created using a collection of operators, e.g. surface detailing,
carving, pulling on a point with symmetric ROI. (d-e) The painted final
model is shown from two different angles. 79

4.38 Topological repair of a vasculature data set. (a and f) The original model.
(b-c) The volume is manipulated using interactive carving to separate two
vessels that were merged due to errors in 3D scanning. (d-e) The volume is
manipulated to recover lost data by connecting a vessel that was separated. 80

4.39 A sphere and a cross section curve is used to create the initial shark body.
The tail and head are modified using additional curves. The fins are added
by locally editing the shark body. The final painted model is shown from
three different views. 82

4.40 A duck is created from a sphere and a cross section curve. A wing is
defined with a sketch-based editing operation. 82

5.1 A scan converted level set model of a horse (upper right) is edited to add
surface details. 88

5.2 Left: Scan converted initial model with its bounding box. Right: Level set
editing operators create a new model that extends outside of the bounding
box. 91

5.3 Three additional data structures (Surface voxels vector, Outside layer vec-
tors and Inside layer vectors) are added to the narrow-band VISPACK
data structure. The new data structures support interactive update rates
by identifying the subset of voxels in the narrow-band needed to solve the
level set PDE during an editing operation. 95

5.4 Changes in the narrow-band linked lists as the curve on the left evolves
into the curve on the right. 97

5.5 A flower pot is modeled from a superellipsoid. (a) Handles and decorations
on the surface are added to the initial model. Soil is added to the top of
the pot. Stems, leaves and the flowers are then modeled above the soil.
(b) Close-ups of the final painted model. 99

x

5.6 (a,c) Parts of the scan converted horse model. (b) A bridle, and mane are
added. (d) A saddle, stirrups and saddlebag are added. (See Figure 5.1
for the final model) . 100

5.7 A bas relief model of a heron created with an open level set model. 101

5.8 Percentage of vertices per VBO for the flower pot model shown in Fig-
ure 5.5. Blue bars represent the distribution for the initial “pot only”
model and the red bars represent the vertex distribution for the final edited
model. 106

6.1 A multiresolution model is modified at Level 1. The modifications are
incorporated into higher levels of the hierarchy. 111

6.2 An illustration of the detail generation process. 116

6.3 Flowchart of the hierarchical multiresolution level set modeling framework. 116

6.4 Multiresolution surface editing. 118

6.5 (a) The scan converted armadillo model. (b) The modifications to the
model smooth out surface details on the back. (c) Two different views of
the smooth surface. (d-e) Different views of the modified armadillo model
after the surface details are added. 120

6.6 A 2D illustration of geometric texture mapping via detail particles. (The
tangent planes are drawn below their actual locations). 130

6.7 (a) Original scan converted model. (b) Low-resolution(LR) model after
filtering and downsampling. (c) A low-resolution edit modifies the general
shape of the head. (d) The modified high resolution model with details.
(e-f) An example of further editing the model at the higher resolution. . . . 132

6.8 The model is modified at Level 1. The modified part of the surface is
upsampled and blended in with the Level 2 model. Level 2 details are
added and the detailed Level 2 surface is upsampled and blended with the
Level 3 model. Finally, Level 3 details are added to create the modified
high resolution surface. The original models at all levels are also included
in the figure. 133

xi

6.9 (a) Original scan converted model. (b) Low-resolution(LR) model after
filtering and downsampling. (c) An edit on the LR model removes the
top part and smoothes the head. (d) The LR modifications are upsam-
pled and blended into the high resolution(HR) model. (e) Back view of
the original scan converted model. The details are extracted from within
the highlighted ROI. (f) Top: The detailed surface Bottom: The detail
particles (g-h) The details that are extracted from the back of the original
HR model are added on top of the edited model. 135

6.10 (a)The original genus-0 disc model. (b) The surface is modified via geo-
metric texture mapping using a checkerboard pattern. (c) A hole is cut in
the center, creating a genus-1 model. (d) A close-up of the smooth surface
before details are added. (e) A close-up of the final model after the details
are added on the modified surface. 135

6.11 (a) A hole is cut at at the center of the disc model. The boundary particles
are drawn in red. (b) A closer view of the center hole (model rotated 90◦

to provide a side view.) (c) Initial position of the detail particles. (d) The
particles are moved partway through the hole by projection and relaxation
of springs to avoid stretching. (e) The details are repeated over the rest
of the surface. (f) Alternate view of the detail particles shown in (e). (g)
Final surface with repeated details. (h) The details are stretched over the
surface. (i) Alternate view of the detail particles shown in (h). (j) Final
surface with stretched details. 136

6.12 (a) The original model is scan converted from a triangle mesh, producing
a noisy level set model. (b) Model after 100 steps of curvature-based
smoothing. (c) Model after a single application of the binomial filter. 137

6.13 (a) Filtered model at level N (b) Reconstructed model at level N , created
by adding level N details to the filtered volume shown in (a) . (c) Original
high resolution model at level N . (d) A closer view of the head belong-
ing to the reconstructed model. (e) A closer view of the head belonging
to the original model. (f) Distance between the reconstructed and the
original model is color coded, red representing the maximum and green
representing the minimum distances.. 138

6.14 The reconstruction error is measured as the distance in voxels between the
reconstructed and the original surface voxels. The error is shown up to
0.5 voxels. Less than 1% of the surface voxels have an error of more than
0.5 voxels. 140

xii

Abstract

Level set methods provide a volumetric implicit surface representation with auto-

matic smooth blending properties and no self-intersections. They can handle arbitrary

topology changes easily, and the volumetric implicit representation does not require

the surface to be re-adjusted after extreme deformations. Even though they have

found some use in movie productions and some medical applications, level set models

are not highly utilized in either special effects industry or medical science. Lack of

interactive modeling tools makes working with level set models difficult for people in

these application areas.

This dissertation describes techniques and algorithms for interactive freeform edit-

ing of large-scale, multiresolution level set models. Algorithms are developed to map

intuitive user interactions into level set speed functions producing specific, desired

surface movements. Data structures for efficient representation of very high resolu-

tion volume datasets and associated algorithms for rapid access and processing of the

information within the data structures are explained. A hierarchical, multiresolution

representation of level set models that allows for rapid decomposition and reconstruc-

tion of the complete full-resolution model is created for an editing framework that

allows level-of-detail editing. We have developed a framework that identifies surface

details prior to editing and introduces them back afterwards. Combining these two

features provides a detail-preserving level set editing capability that may be used

for multi-resolution modeling and texture transfer. Given the complex data struc-

tures that are required to represent large-scale, multiresolution level set models and

the compute-intensive numerical methods to evaluate them, optimization techniques

and algorithms have been developed to evaluate and display the dynamic isosurface

embedded in the volumetric data.

1

1. Introduction

Surface models, e.g. triangles meshes, NURBS and subdivision surfaces, have been

the most widespread modeling representation used within computer graphics and

visualization for several decades. In these models topologically-2D surfaces existing

in 3D Cartesian space have been explicitly represented with 2D structures, such as

triangles and spline patches. While these have been the predominant models for quite

some time, implicit models, which represent surfaces as isosurfaces of a 3D scalar

field, are becoming more prevalent and important to such disparate disciplines as

special effects and medicine/biology. The scalar fields of these models are frequently

represented by volume data sets, i.e. 3D rectilinear grids that store scalar values at

grid crossings.

(a) (b)

Figure 1.1: (a) 3D laser scanner, scanning statue of David. (b)The 3D model recon-
structed from the laser scan data. (Images from the Digital Michelangelo Project)

As imaging technology continues to be rapidly deployed and utilized in medicine

and science, an increasing number of volume datasets are generated, producing an

2

overwhelming flood of raw volume data that must be processed, viewed and analyzed

(Figure 1.1). Usually there are 3D surfaces embedded in these volume datasets that

are of interest to doctors and scientists. In the field of computer graphics, laser scan-

ning technology is used to acquire high resolution models of complex objects. The

raw data from this process are large point sets or numerous distance maps that must

be reconstructed to produce the final surface model. Many of the reconstruction algo-

rithms generate volumetric, implicit representations of the objects before converting

them into explicit surface models. Many of the advanced special effects in movies uti-

lize physical simulation to produce computer-generated fluid flows of floods, storms,

pouring/splashing liquids, etc. The computational fluid dynamic (CFD) calculations

for these effects are usually done on a regular 3D grid and produce dynamic volume

datasets as output.

In all three of these examples complex surfaces are acquired/produced and are

represented implicitly with large-scale volume datasets. In medicine and science the

implicit surface models of an object of interest must be extracted from the volume

dataset. For most datasets these objects of interest are quite complex and cannot be

automatically identified and extracted, and require significant user input and manip-

ulation to produce the final desired result.. Laser-scanning-based model acquisition

is not an error-free technology. Frequently, models automatically produced by this

process must be manually fixed. In addition, designers may wish to edit/modify

the model once it has been obtained. During special effects sequences simulations

sometimes require complex initial condition configurations and mid-sequence correc-

tions/redirections, as well as post-simulation clean-ups. In all of these cases large-

scale implicit, volumetric models need to be modified and edited to meet scientific

and artistic goals. Unfortunately, general editing capabilities for volumetric surface

models do not exist, and frequently it becomes necessary to extract explicit surface

3

Scanner Volumetric
Model

Eplicit
Surface

Edit
Surface

Scan
Conversion

Simulation

(a) Current pipeline for using volumetric models

Scanner Volumetric
Model

Eplicit
Surface

Edit
Surface

Simulation

(b) Pipeline for future modeling and simulation systems using
volumetric models

Figure 1.2

models from the volumes, edit the surfaces, and re-convert the edited surface back

into a volumetric, implicit form. This is an inefficient and cumbersome approach to

the problem of editing these types of models.

In summary, there are several applications in computer graphics and medical sci-

ence that use volumetric models. Usually, these models are converted into explicit

surface representations before they can be utilized by such applications. The con-

version and reconstruction algorithms are cumbersome and the raw data may have

a significant amount of noise/errors, requiring user manipulation and clean up prior

to further processing and analysis. Furthermore, drastic deformations of complex

4

explicit models generate a series of problems such as cracks and rough patches where

surfaces meet. They require remeshing at the areas that get thinned or expanded too

much. The topological errors caused by self intersections are nontrivial to correct. To

the best of our knowledge there is currently a paucity of adequate volumetric editing

tools capable of high resolution and high level surface manipulations. To address these

shortcomings we have developed techniques and algorithms for interactive freeform

editing of large-scale, multiresolution level set models. We believe that creating tools

for directly editing volumetric, implicit models is the most logical and advantageous

approach to modifying these models, rather than relying on conversion techniques and

explicit surface editing capabilities. Figure 1.2 shows the current pipeline for using

volumetric models as well as the new pipeline we have devised using our approach as

explained in this thesis.

Level set models combine a low-level volumetric representation, the mathematics

of deformable implicit surfaces, and robust numerical techniques to produce a pow-

erful approach to geometric modeling. Level set model manipulations are based on

formulating and solving a partial differential equation (PDE). They are guaranteed

to define simple (non-self-intersecting) and closed surfaces, and they easily change

topological genus, making them ideal for representing complex structures of unknown

or transforming genus. These volumetric models support straightforward solid mod-

eling operations and calculations, while simultaneously offering a surface modeling

paradigm. The benefits offered by these features provide the motivation for utilizing

level set models to process and manipulate volumetric, implicit surfaces and make

them unique for applications utilizing complex surfaces with dynamically changing

topology such as “amorphous” characters moving freely in an environment while in-

teracting with other solid or soft objects, cracking or exploding surfaces, fluid and

smoke simulations, as well as representing surfaces acquired from medical scan data.

5

(a) (b)

CrackTastic
Fast 3D Fragmentation in “The Mummy: Tomb Of The Dragon Emperor”∗

Ken Museth and Michael Clive

Digital Domain, Inc.

Abstract: We have developed an efficient technique for fast and
production-friendly fragmentation of solid (i.e. closed) geometry.
It is based on novel data structures and algorithms that allow us to
employ fast and robust level set operations to generate fragments
at very high resolutions and speeds far exceeding fully physics-
based simulation techniques. Our tool, dubbed “CrackTastic”, is
embedded into a larger Houdini framework that adds artistic con-
trol to the fracture generation as well as augments with physics-
based animations by means of rigid body dynamics (RBD) of the
fragments. “CrackTastic” is derived from a vision to balance fully
physics-based fracture simulations and completely manual model-
ing since both extremes pose major disadvantages in terms of pro-
duction time and artistic flexibility. In contrast, our new framework
allows a single artist to produce massive fragmentations on the or-
der of minutes as oppose to hours or even days. “CrackTastic” has
already been used in the newly released movie “The Golden Com-
pass”, but more significantly constitutes a key-technology in the
upcoming movie “The Mummy, Tomb Of The Dragon Emperor”
that features complex fragmentation on a very large scale.

Overview: The input to “CrackTastic” is a “base-geometry” (e.g.
textured polygonal mesh) with associated (arbitrary) impact points
and the output is an animation of the fracturing. The first step in our
pipeline converts the base-geometry to a level set using a new robust
scan-converter that can handle self-intersecting meshes. We then
have to option to produce shells (i.e. double-walls) from the solid
base-geometry. This is a highly desired feature for “Mummy 3” and
is easily accomplished by means of fast level set operations. Next,
the impact points are used to generate so-called “scatter-points”.
The position (and other attributes) of these scatter-points are com-
puted by means of simplified physical heuristics derived from the
base-geometry and the impact points. We have then developed an
efficient level set procedure to recursively generate naturally look-
ing fragments. The characteristics of the fragments (size, shape,
density etc.) are easy to controlled or optionally automate. As the
final step, RBD is applied to the fragments to account for the dy-
namics of the shattering. Overall this approach is very production-
friendly since it is both intuitive and easily allows for artistic con-
trol. However, to facilitate fast level set operations that produce
tightly fitted fragments with arbitrarily complex topology, high res-
olution and no self-intersections, we need some “extra sauce”:

∗Some of the materials included in this submission are place-holders for
“Mummy 3” shots that we cannot publish before the movie-release in June.

DB-Grid forms the fundamental representation of all our geometry
processing, and is best described as a highly efficient data struc-
ture for arbitrary volumetric data. It employs different blocking
techniques to reduce memory footprints and ensure fast data ac-
cess. It shares several of the benefits of the extremely compact
DT-Grid[Nielsen and Museth 2006], but complements with sev-
eral important improvements. Whereas DT-Grid is strictly limited
to (closed) level sets, DB-Grid can literally encode any volumetric
data, including of course unclosed (i.e. none-manifold) surfaces or
even random densities! Furthermore, DB-Grid allows for both “ran-
dom read and push/pop” in constant time unlike the logarithmic ran-
dom read of DT-Grid and complete absence of random push/pop.
Thus, we can represent surfaces with DB-Grids of effective grid
resolutions exceeding 80003, which is more then adequate for VFX
production. We currently employ DB-Grid to represent high reso-
lution level sets in “CrackTastic”, but we have also used it to dra-
matically improve the performance of “Blobtacular” presented last
year[Museth et al. 2007]. In the near future we also plan to use DB-
Grid in Digital Domain’s award-winning fluid solver (FSIM) and
volume renderer (STORM) to allow for much high resolutions and
fidelity. Preliminary results with FSIM look very promising.

Post-processing: Ironically DB-Grid introduces a new problem for
in the overall pipeline; the access to very high resolutions level sets
obviously result in the generation of meshes with very high polygon
counts. To solve this problem we have also developed a fast mesh
decimator. Additionally we have extended “CrackTastic” to cor-
rectly transfers mesh attributes (i.e. texture coordinates) from the
“base-geometry” to the decimated meshes of the final fragments. A
combination of all these tools and techniques make up the “Crack-
Tastic” pipeline which is routinely used by artists to fracture thou-
sands of terracotta warriors in the upcoming “The Mummy: Tomb
Of The Dragon Emperor”. We look forward to presenting some of
these dramatic shots after the movie release in June.

References

MUSETH, K., CLIVE, M., AND ZAFAR, N. B. 2007. Blobtacular:
Surfacing particle systems in “pirates of the caribbean 3”. In
ACM SIGGRAPH Sketches.

NIELSEN, M. B., AND MUSETH, K. 2006. Dynamic Tubular
Grid: An efficient data structure and algorithms for high resolu-
tion level sets. Journal of Scientific Computing 26, 3, 261–299.

(c)

(d) (e)

(f)

Figure 1.3: Screenshots of level set models utilized in special effects and animations.
(a) The Sandman in Spider-Man 3. (b) The Tar Monster from Scooby Doo 2. (c)
Terra cotta soldiers from The Mummy: Tomb Of The Dragon Emperor. (d) The giant
maelstrom in Pirates of the Caribbean 3. (e) Dancers from Bacardi commercial. (f)
Clouds from Puss in Boots.

6

(a)

Figure 1.4: Level set models are used in medical volume segmentation [Breen et al.,
2005].

Even though they have found some use in special effects and animation (see Figure

1.3) as well as some medical applications such as volume segmentation (see Figure

1.4), level set models are not highly utilized in either special effects industry or med-

ical science due to the memory requirements of storing the volumetric representation

and the time consuming evaluations of the techniques and algorithms necessary for

modifying such implicit surfaces at high resolutions. The space and time complexity

of storing and deforming these models prevent them from being utilized in interac-

tive modeling systems as well. A current state-of-the-art system uses models that

contain one billion voxels and provides 25-30 frames-per-second(fps) evaluation time

at these resolutions. Even the most advanced data structures and algorithms de-

veloped for level set models are not sufficient to support both of these requirements

simultaneously.

Our work closes the gap between level set methods and interactive modeling ap-

plications by providing new techniques and algorithms to incorporate these models

in state-of-the-art modeling frameworks. Aspects of another emerging modeling ap-

7

Interactive, Multi-Resolution
Techniques for Editing
Large-Scale Level Set
Models

 Level Set Surface
Editing Operators

Multi-Resolution
Techniques for
Level Set
Methods

Compressed Data
Structures with
Fast Random Access

Interactive
Techniques for
Large-Scale Level
Set Surface Editing

Local Level Set
Surface Editing
Techniques

Hierarchical
Level Set
Data Structures

Accurate & Fast
Level-of-Detail
Editing

Free-Form
Operators

Sketch-Based
Techniques

Preserving
High-Resolution
Details

Interactive
Display of
Large-Scale
Models

Figure 1.5: Research outline and objectives.

proach, point-based models, have been incorporated with level set models to provide

enhanced, novel modeling capabilities. Algorithms and techniques needed to imple-

ment numerous level set modeling capabilities have been developed. A general outline

of the research objectives is depicted in Figure 1.5. The contributions of this work

are:

1. We have developed a set of free-form editing operators, which provide direct

implicit surface manipulations, within a level set framework. These operators

allow a user to add or remove surface detail from a level set model by interac-

tively moving geometric handles attached to the surface. Since a level set model

can only be modified via solving the level set equation, a speed function, which

is the component of the equation that defines the surface’s evolution, has been

devised for each editing operator.

2. We have explored and evaluated data structures and techniques that enable

for the first time the interactive editing and display of high resolution level

set models. The high resolution models, if stored in a 3D array, would con-

tain more than three billion voxels, and the interactive rates achieved by our

level set modeling system is normally above 25 fps. As compared to previous

8

PDE-based modeling work, our system provides significantly faster processing

speeds on much larger volumetric models, even when considering the difference

in processor power.

3. We have developed a framework that identifies surface details prior to edit-

ing and introduces them back afterwards. Additionally we have developed

techniques that allow a user to manipulate/edit a level set surface at differ-

ent geometric scales and levels of detail. Combining these two features pro-

vides a detail-preserving level set editing capability that may be used for multi-

resolution modeling and texture transfer.

4. We have developed 2D schemes that provide a versatile, expressive and powerful

localized curve editing capability for Catmull-Rom splines.

5. Given the complex data structures that are required to represent large-scale,

multiresolution level set models and the compute-intensive numerical methods

to evaluate them, optimization techniques and algorithms have been developed

to evaluate and display the dynamic isosurface embedded in the data structure.

Application Areas: The outlined research provides benefits for a number of fields.

Firstly, numerous fundamental advances for geometric modeling and Computer-Aided

Design are produced, bringing new capabilities to implicit/level set modeling. These

advances may find immediate use in two disparate application areas; special ef-

fects/animation and medical/biological imaging. Level set models are being used

significantly to simulate fluid flow [Losasso et al., 2004, Enright et al., 2002b] and

morphing effects [Breen and Whitaker, 2001, Wiebe and Houston, 2004] in anima-

tions and movies. Powerful modeling techniques will be useful for creating the initial

conditions needed for the simulation of these effects. In medicine and biology, level set

models are used for segmentation and processing of imaging datasets [Breen et al.,

9

2005, Yoo, 2004]. These techniques rarely provide a completely accurate solution;

thus interactive modeling methods are needed, so doctors and biologists may fine-

tune and correct mistakes made by the automated systems. Laser-scanning-based

model acquisition is not an error-free technology. Frequently the volumetric models

automatically produced by this process must be manually fixed, and designers may

also wish to edit/modify the model once it has been obtained. Our editing frame-

work provides the means to directly manipulate these volumetric data to correct and

enhance the 3D reconstructions.

10

2. The Level Set Method

Level set models are defined as an isosurface (S), i.e. a level set, of a dynamic

implicit function φ,

S = {x | φ(x, t) = k}, (2.1)

where k ∈ < is the iso-value, x ∈ <3 is a point in space on the isosurface and

φ : <3 → < is a scalar function.

The scalar field (φ) of a level set model is represented by a volume dataset, each

voxel of which stores a scalar value that represents the shortest distance to the implicit

surface. Each voxel value has a sign, positive or negative, based on the position of

the voxel with respect to the interface, i.e. inside or out. This scalar field is also

called a signed distance field/function (SDF). Even though an SDF does not uniquely

represent an isosurface, it is preferable due to the smoothness of the function near

the surface and the simplifications it allows while approximating surface properties

such as normals and curvatures. When φ is an SDF, the surface normal can be

approximated by the gradient (∇φ), and the curvature can be approximated by the

Laplacian (∆φ).

Level set methods [Osher and Sethian, 1988, Sethian, 1999, Osher and Fedkiw,

2002] provide the techniques needed to change the values of the implicit function in

a way that moves the embedded isosurface. The surface is deformed by solving a

partial differential equation (PDE) on a regular sampling of φ, i.e. a volume dataset.

The level set PDE can be written as

∂φ

∂t
= −|∇φ|F (x, Dφ,D2φ . . .), (2.2)

where F () is a user defined speed term which depends on a set of order-n derivatives

11

of φ as well as other functions of x.

Depending on the speed term F (), Equation 2.2 can either be a hyperbolic PDE

(Equation 2.3) that defines a constant motion in the normal direction, or a parabolic

PDE (Equation 2.4) that defines motion by mean curvature:

∂φ

∂t
= −|∇φ|a, (2.3)

∂φ

∂t
= −|∇φ|bκ. (2.4)

In Equation 2.3, F () only depends on up to first derivatives of φ and defines the

speed of the level set surface at point x in the direction of the local surface normal

(∇φ/|∇φ|). The surface is deformed over time by moving either inwards or outwards

in the direction of the local normal with constant speed a. A variety of numerical

methods exist to calculate spatial derivatives necessary to solve Equation 2.3. How-

ever, one must consider the direction in which the interface moves while picking grid

points for gradient calculations. In one dimension, if the interface is moving from left

to right, the points to the left of the interface must contribute to gradient calculations

and vice versa. This method is called upwind differencing. A first-order accurate up-

wind differencing scheme approximates spatial derivatives by taking the difference

between a grid point and its 1-ring neighbors. Higher order methods such as HJ-

ENO [Harten et al., 1987] and HJ-WENO [Liu et al., 1994] provide up to fifth-order

accurate approximations while using more neighboring grid points in calculations.

A second-order accurate central difference scheme can be used to approximate the

mean curvature (κ) in the parabolic PDE in Equation 2.4. Here, b is a constant and

the surface moves in the direction of convexity when b < 0 and in the direction of

concavity otherwise.

The Forward Euler method provides a first-order accurate time discretization.

12

This method coupled with an upwind or central differencing scheme respectively is a

consistent finite difference approximation to PDEs in Equations 2.3 and 2.4, since the

approximation error converges to zero as ∆t → 0 and ∆x → 0. The approximation is

convergent, i.e. the correct solution is obtained as ∆t → 0 and ∆x → 0, if and only if

it is also stable. Stability guarantees that small errors in the approximation are not

amplified as the solution is marched forward in time. Stability is enforced by using the

Courant-Friedreichs-Lewy (CFL) conditions, which asserts that the numerical waves

should propagate at least as fast as the physical waves. This leads to a time step

restriction of

∆t <
∆x

max(|F |)
. (2.5)

Higher order methods also exist for a more accurate temporal discretization. TVD-

RK schemes can be used to calculate up to third order accurate approximations to φ

at time t+∆t [Shu and Osher, 1988]. The Forward Euler method discussed above is a

first order accurate TVD-RK scheme. Even though higher than third order schemes

exist, they do not make a significant difference in practical applications.

A third type of motion advects the level set surface passively in an externally

generated velocity field. Numerical techniques like upwind differencing and forward

Euler can be used to solve these types of hyperpolic PDEs (Equation 2.6). The work

described in this thesis does not use this type of motion to move the level set surface.

∂φ

∂t
= −|∇φ|~V (2.6)

As mentioned earlier, a number of simplifications can be made when φ is an SDF.

It is also important that φ stays smooth enough to approximate its spatial derivatives

with some degree of accuracy using finite difference schemes. As the interface evolves,

φ will generally drift away from its initialized value as a signed distance and develop

13

noisy features and steep gradients. For these reasons, it is important to re-initialize

φ as a signed distance to the interface. Some techniques exist to reinitialize φ as an

approximate SDF. The SDF has the property

|∇φ| = 1. (2.7)

Equation 2.7 is called the Eikonal equation. The grid points adjacent to the interface

are set initially and form the boundary conditions. The equation can be solved

using upwind differencing to approximate the gradient. When the solution of the

Eikonal equation reaches a steady state, φ is an SDF. Fast Marching Methods (FMM)

[Sethian, 1995, Tsitsiklis, 1995] can mimic the solution to the Eikonal equation by

marching distance values out from the interface to calculate the SDF at each grid

point.

The sparse field method (SFM) [Whitaker, 1998] is an efficient algorithm that

maintains φ as an approximate SDF. Even though it cannot be used to initialize a

narrow-band just from a set of points on the interface, it can be used to maintain φ as

an SDF during level set deformations once initialized by another method like FMM.

SFM makes it feasible to recompute the neighborhood of the level set model at each

time step without the need to stop the evolution and re-initialize the entire distance

field. The distance field is re-initialized on the fly as the values of φ are updated

during the level set evolution.

14

3. Previous Work

3.1 3D Modeling

The related previous work in modeling and surface editing can be organized into

five main categories: subdivision surfaces, volume sculpting, volume deformations,

implicit modeling and PDE-based modeling. In this section we will describe each of

these modeling approaches, present previous work on each topic and discuss why we

believe a level set approach would be more beneficial over these approaches.

3.1.1 Subdivision Surfaces

Subdivision surfaces [Warren and Weimer, 2001, Peters and Reif, 2008, Ander-

sson and Stewart, 2010] are polygonal mesh surfaces generated from a base mesh

through an iterative process that subdivides the polygons; thus smoothing the mesh

by increasing the density of polygons. Complex smooth surfaces can be derived in

a reasonably predictable way from relatively simple base meshes. Many different

schemes exist for the polygon subdivision process. The Catmull-Clark scheme [Cat-

mull and Clark, 1978, Stam, 1998] is the most well-known, and is currently used in

many high-end modeling and animation packages. This scheme generalizes bi-cubic

uniform B-splines to produce a subdivision scheme. For arbitrary initial meshes,

it generates limit surfaces that are C2 continuous everywhere except at extraordi-

nary vertices where they are C1 continuous. Doo-Sabin subdivision surface [Doo and

Sabin, 1978] is a type of subdivision surface based on a generalization of bi-quadratic

uniform B-splines to produce C1 limit surfaces with arbitrary topology for arbitrary

initial meshes. Another popular scheme for surface subdivision is the Loop scheme

[Loop, 1987], which works only on triangle meshes and generates C2 continuous limit

15

surfaces everywhere except at extraordinary vertices where they are C1 continuous.

Subdivision surfaces are easy to implement, they can model surfaces of arbitrary

topological type, and the continuity of the surface can be controlled locally. How-

ever, their use has been hindered by the lack of a closed form, i.e. they are defined

only as the limit of an infinite procedure. Additionally, subdivision surfaces are ex-

plicit surface representations that cannot be used to represent and modify volumetric

models.

3.1.2 Volume Sculpting

Volume graphics [Kaufman et al., 1993] involves the synthesis, manipulation, and

rendering of volumetric objects, which are stored as an array of voxels. Interac-

tive sculpting tools for clay-like [Galyean and Hughes, 1991, Perng et al., 2001] and

solid [Wang and Kaufman, 1995] models represent the material by voxel data and

define tools that can add/remove material, as well as perform smoothing operations.

Some sculpting metaphors utilize alias-free volume sampling [Wang and Kaufman,

1994] or uniformly sampled scalar fields [Ferley et al., 2000] as the volume represen-

tation. These efforts are extended in Ferley et al. [2001] to achieve interactive editing

speeds using resolution adaptive volume sculpting and also in McDonnell et al. [2001]

to create a real-time sculpting system using subdivision solids. Some volume sculpting

applications use haptic feedback to give the user a sense of shaping a virtual mate-

rial [Blanch et al., 2004]. Volumetric models are frequently represented as uniform or

adaptive 3D distance fields [Frisken et al., 2000, Perry and Frisken, 2001, Frisken and

Perry, 2006, Jones et al., 2006]. Leu and Zhang [2008] describe a method to convert

volume sculpted models into distance fields and apply curvature-based smoothing

using the level set method.

Level set models are implicit surfaces embedded in volume datasets; thus support-

16

ing straightforward solid modeling operations while providing surface properties such

as normal and curvature that may be used during surface editing. Their main advan-

tage over voxel-based models is their ability to provide a high-level surface paradigm

based on a low-level volumetric representation.

3.1.3 Volume Deformations

Freeform Deformations (FFDs) [Sederberg and Parry, 1986] place a lattice around

a model. Moving the lattice deforms the 3D space enclosed by the lattice, and there-

fore deforms the model. Different approaches to this metaphor utilize cellular au-

tomata [Arata et al., 1999] for transportation of mass through a 3D grid or evolving

scalar fields that define deformations of polygonal models [Hua and Qin, 2004]. Space

deformation techniques for interactive virtual sculpting [Angelidis et al., 2004, 2006]

create a deformation field with a volumetric tool. There also exist vector field based

deformations [von Funck et al., 2006, 2007] and point-based techniques [McDonnell

and Qin, 2007] for performing freeform deformations of polygonal meshes.

These editing systems use indirect spatial deformations to edit the underlying

model. Level set techniques work directly on the implicit surface and do not deform

the space around the model. They provide more intuitive and straightforward control

over the deforming surfaces.

3.1.4 Implicit Modeling

Implicit models [Bloomenthal and Wyvill, 1997, Velho et al., 2002] are a widely

used representation for geometric modeling applications. Soft Objects were one of the

first successful systems based on implicit models [Wyvill et al., 1986b,a, Wyvill and

Wyvill, 1989]. Wyvill et al. [1999] created an implicit modeling system that combines

constructive solid geometry (CSG) operations with blending and warping. They use

17

a tree-based representation, called the BlobTree, where leaves of the tree are the

primitives and inner nodes are the operations, i.e. warp, blend, union, intersection

and difference, as well as Barr deformations [Barr, 1984]. The system’s interactive

performance was improved in Bloomenthal and Wyvill [1990], Schmidt et al. [2005a].

More techniques for generating 3D implicit sweep volumes compatible with these

systems are described in Schmidt and Wyvill [2005]. These techniques are extended

with a sketch-based editing framework [Schmidt et al., 2005b] . ShapeShop [Schmidt

et al., 2005b] uses BlobTrees as the underlying shape representation for a sketch-based

editing framework. A curve-based primitive is introduced that may be “inflated” or

extruded. Sketch-based models are produced by combining this primitive with CSG

and blending operations. This work was extended by the addition of a curve-based

freeform deformation capability [Sugihara et al., 2008].

Desbrun and Cani [Desbrun and Cani, 1995, Cani and Desbrun, 1997] present

a hybrid model that combines implicit surfaces with a particle system, a rigid solid

or a mass-spring network for animation of soft inelastic substances which undergo

topological changes. They also use a volume-based implicit representation to animate

isosurfaces defined within a 3D grid that stores a potential field [Desbrun and Cani,

1998].

Some other modeling systems use skeletons defined as a graph of interconnected

subdivision curves and surfaces [Angelidis and Cani, 2002, Angelidis et al., 2002,

Hornus et al., 2003], interpolating [Turk and O’Brien, 2002] or variational implicit

surfaces [Karpenko et al., 2002, Araujo and Jorge, 2003], convolution surfaces [Tai

et al., 2004] or spherical implicit functions [Alexe et al., 2004], to represent 3D models.

Arbitrary large-scale deformations to analytical implicit surfaces require a skeleton

structure to create a volumetric model. Level set models have volumetric represen-

tations by definition. In contrast to skeleton-based implicit models, our operators

18

have been developed for direct small-scale modifications of implicit surfaces that are

not tied to skeleton manipulation. Large-scale level set model deformations could be

performed with skeletons. This is a topic of future work.

3.1.5 PDE Models

Level set methods have been used for volume sculpting [Bærentzen and Chris-

tensen, 2002], CSG-based surface editing, automatic blending and curvature-based

smoothing [Museth et al., 2002, 2005]. Mullen et al. [Mullen et al., 2007] propose

a mass-preserving variational approach for geometry processing of volumetric im-

plicit surfaces and foliations using an Eulerian formulation. Zhang and Lihua [2001]

developed a geometric modeling framework based on partial differential equations

(PDEs) that incorporates geometric constraints and functional requirements into

PDEs. PDE-based volumetric sculpting [Du, 2003, Du and Qin, 2004, 2005, 2007]

defines smooth surfaces as a solution to a fourth order elliptic PDE with geometric

and physical boundary conditions such as curvature and normals. Lawrence and

Funkhouser [2004] propose a painting paradigm for specifying surface deformations

for level set surfaces and triangle meshes.

In contrast to previous work, our operators and processing techniques provide

new methods for interactive, direct, freeform modifications of level set models. They

provide a significantly more expressive and flexible editing capability to level set

modeling. We also favorably compare our results to previous PDE-based modeling

work in terms of model resolution, processor speed and running times in Section 5.4.

3.2 Sketch-Based Techniques for 3D Modeling

Sketching communicates ideas rapidly with approximate input, no need for pre-

cision or specialized knowledge, and easy low-level correction and revision. Sketch-

19

based modeling tools allow the user to sketch the salient features of a 3D primi-

tive and the system produces the corresponding 3D model in the scene. Numerous

sketch-based modeling techniques have been developed for meshes [Zeleznik et al.,

1996, Igarashi et al., 1999, Igarashi and Hughes, 2003, Nealen et al., 2007, Mori and

Igarashi, 2007, Zimmermann et al., 2007], parametric surfaces [Cherlin et al., 2005],

procedural surfaces [Schmidt and Singh, 2008], volumetric models [Owada et al., 2003]

and implicit surfaces [Schmidt et al., 2005b, Sugihara et al., 2008, Karpenko et al.,

2002, Araujo and Jorge, 2003, Tai et al., 2004, Alexe et al., 2004]. Our sketch-based

editing operators are inspired by these techniques and extend a number of them to

level set models.

SKETCH [Zeleznik et al., 1996] introduced a gesture-based interface for the rapid

modeling of CSG-like models consisting of simple primitives. The user sketches the

salient features of a 3D primitive and the system instantiates the corresponding 3D

model in the scene. An improved sketch-based modeling system, Teddy [Igarashi

et al., 1999], uses 2D user strokes to construct 3D polygonal surfaces. This highly in-

teractive system translates simple user strokes to actions such as paint, erase, extrude,

cut and smooth to create 3D models. They later developed a framework to create

visually smooth surfaces from their sketch-based modeling environment [Igarashi and

Hughes, 2003]. This work was extended in FiberMesh [Nealen et al., 2007] to use a

set of 3D curves to define the surfaces. For a given set of curves, the system auto-

matically constructs a smooth surface by applying functional optimization. Another

application created by the same approach is Plushie [Mori and Igarashi, 2007], an

interactive design system for 3D plush toys. In all of these applications a relatively

coarse mesh (1000-2000 vertices) is used to achieve interactive performance. Owada

et al. [2003] use a binary volume dataset to overcome the topological restrictions of

Teddy.

20

Wires [Singh and Fiume, 1998] is a deformation technique that uses curves (wires),

placed in close proximity to a polygonal surface, as handles to deform the surface

locally. This technique has been applied to animation of facial expressions, cloth

animation and surface stitching. Lawrence and Funkhouser [2004] utilize a painting

paradigm for local surface deformations, where user-applied “paint” defines instan-

taneous surface velocities. They initially implemented this technique using level set

surfaces, but later switched to polygonal surfaces in order to achieve interactive rates

and improve spatial resolution. Cherlin et al. [2005] use interpolating parametric

surfaces in their sketch-based modeling framework. Layered procedural surfaces may

be created and manipulated with Surface Trees [Schmidt and Singh, 2008], a hier-

archical representation of surface patches and surface editing operations. This ap-

proach merges sketch-based interaction with a 3D analog of the intuitive layer-based

metaphors found in 2D graphic design tools.

3.2.1 Curve Editing

Some of the editing capabilities we have developed require sketched curves to

facilitate user interaction. The user should be able to draw and edit the curves

interactively in order to create custom outlines for surface manipulations.

Catmull-Rom (C-R) splines [Catmull and Rom, 1974] offer many useful modeling

properties, such as affine invariance, global smoothness, and local control. They

are therefore of great interest to Computer Aided Design (CAD) users. C-R splines

are easily evaluated and are a good choice for interactive applications because they

interpolate their control points and therefore provide an intuitive way to represent

and edit curves in these applications. In general it is more natural for points drawn

by a user to end up on the curve, rather than defining control points that lie away

from the actual curve.

21

Finkelstein and Salesin [1994] present the theory and methods for multiresolution

curves, which are detail preserving, end-point-interpolating cubic B-splines that may

be modified at different spatial resolutions. They describe a robust mathematical

foundation based on wavelets that supports smoothing, editing and approximating

these splines. Although this type of curve has desirable properties, e.g. multireso-

lution support, it is not easy to apply to an interactive application where a novice

user would need to provide a set of parameters to create the complex framework. El-

ber and Gotsman [1995] extend this approach to non-uniform B-splines and provide

the mechanism for local refinement and adaptive local curve manipulation. However,

this method uses least-squares approximation for multiresolution decomposition of

the freeform curve and is incapable of providing continuous resolution control. Later

work [Elber, 2001] presents a scheme that combines multiresolution control with linear

constraints into one framework, allowing one to perform multiresolution manipulation

of non-uniform B-spline curves, while specifying and satisfying various linear con-

straints on the curves. The multiresolution control combined with linear constraints

prescribes a precise freeform geometry, and creates a framework for interactive editing

of non-uniform B-spline curves.

Compared to previous work, our approach provides a novel technique for direct

manipulation of an interpolating spline that allows a user to easily modify a curve

with an adjustable span of influence; thus overcoming the locality restriction of C-R

splines. The relative simplicity of the method ensures that the modification will occur

at interactive rates.

22

3.3 Representing and Rendering Large-Scale Volumetric Models

3.3.1 Advanced Level Set Data Structures

The original level set method [Osher and Sethian, 1988] has O(n3) time and space

complexity, where n is the side length of the bounding volume in which the deforming

isosurface is embedded. The time complexity can be reduced to O(n2) with a narrow-

band scheme [Adalsteinsson and Sethian, 1995, Peng et al., 1999, Whitaker, 1998]

that solves the PDE in a narrow-band only around the interface. In order to mini-

mize the memory requirement of level sets while keeping the time complexity of the

evaluation algorithms low, octree-based approaches have been employed [Bærentzen

and Christensen, 2002, Losasso et al., 2004]. Octrees have also been utilized in other

volumetric modeling systems [Frisken et al., 2000, Meagher, 1982, Perry and Frisken,

2001]. The space complexity of these methods is O(n2) and the random access time

to the values is O(log n). The major drawback of these methods, as with all level set

methods, is that they require a uniform refinement along the interface to use finite-

difference based numerical methods; thus losing the adaptiveness benefit provided by

the octrees.

Run-length encoding (RLE) is a simple form of lossless data compression in which

runs of data (i.e. sequences in which the same data value occurs in consecutive data

elements) are stored as a single data value and a count. The RLE sparse level set data

structure [Houston et al., 2004] assigns either a very large positive or negative value

to all voxels outside of the narrow-band, which are then compressed into runs on each

side of the narrow band using RLE. It has O(n2 + R + D) space complexity, where R

is the number of runs and D is the number of voxels in the narrow-band. The method

uses a 2-D array to facilitate fast random access (O(log r), where r is the number of

runs in a level set cross section. Nielsen and Museth [2006] created the DT-Grid (Dy-

namic Tubular Grid) data structure, which uses a hierarchical representation of the

23

data’s dimensions to compress the volume and gain memory efficiency. DT-Grid pro-

vides constant access time to the grid’s values and their immediate neighbors as long

as all values are accessed sequentially. It also provides logarithmic (O(log n)) ran-

dom access to the sparse data by keeping the data lexicographically sorted. However,

this data structure is unsatisfactory for interactive applications due to the additional

steps required for keeping the data sorted and densely packed during insertion and

deletion operations. The RLE sparse level set and DT-Grid were combined to create

an improved data structure, Hierarchical RLE (H-RLE) level sets [Houston et al.,

2006]. This method employs RLE in a dimensionally recursive fashion combined with

a narrow-band scheme and provides O(D) space complexity, i.e. O(n2). H-RLE also

keeps the data sorted in linear arrays and suffers from the same drawbacks as DT-Grid

when performing arbitrary modifications to the level set.

While narrow-band schemes effectively address the problem of time complexity in

the original level set formulation, they explicitly store a full Cartesian grid and use

additional data structures to identify the narrow-band grid voxels. For example, the

cartoon bear model in Figure 4.3(a), which is represented with a 320 × 320 × 600

dense volume, i.e. full Cartesian grid, requires 3 GB of memory during editing. The

advanced data structures described in this section all reduce the space complexity

from O(n3) to ∼ O(n2). However, none of these data structures were designed for the

rapid, random, local voxel accesses, updates and modifications that are essential for

an interactive surface editing application. Data structures and algorithms we describe

in Chapter 5 reduce the memory required for the bear model to 150MB while allowing

the user to edit this model at 25 fps and higher.

24

3.3.2 Interactive Rendering of Large-Scale Dynamic Point Sets

The conventional method for viewing level set models is to extract a polygonal

approximation of the isosurface from the volume using the Marching Cubes algo-

rithm [Lorensen and Cline, 1987]. This approach has been shown to provide minimally

acceptable display rates for low resolution models undergoing limited deformations

[Museth et al., 2002, 2005], but it will not provide interactive rates for large-scale

models.

Points on the surface can be used for interactive display [Stamminger and Dret-

takis, 2001] via rendering on a Graphics Processing Unit (GPU). Several recent ad-

vances have demonstrated that high quality interactive renderings can be generated

from large-scale point-based models [Ren et al., 2002, Botsch et al., 2004, Chen et al.,

2004, Botsch et al., 2005], using surface splatting [Zwicker et al., 2001]. Surface splat-

ting is a point rendering and texture filtering technique that directly renders opaque

and transparent surfaces from point clouds. Point rendering work on GPUs has pro-

duced interactive display rates for static models consisting of millions of points. The

challenge here is to produce interactive rates for even larger dynamic point-based

models and the main barrier to achieving this goal is the communications bottleneck

between the CPU and GPU.

Recent research has demonstrated that level set models can be interactively evolved

and displayed using GPUs [Cates et al., 2004, Lefohn et al., 2003, 2004, Rumpf and

Strzodka, 2001]. These efforts, while impressive and ground-breaking, only imple-

mented time-invariant, rudimentary speed functions capable of curvature-based flows

that moved to match iso-values in volume data to perform segmentation. A major

contribution of Lefohn et al. [2003, 2004] is the mapping and packing of a narrow-band

embedded in a 3D grid into the limited 2D memory of the GPU. The data structures,

speed functions and algorithms needed to implement freeform editing of large-scale,

25

multiresolution level set models are significantly more complex than those used in

these segmentation examples, which makes them harder to implement for a GPU.

Hierarchical octree data structures are one of the most common choices to handle

large point sets for interactive rendering [Coconu and Hege, 2002, Sainz and Pajarola,

2004]. While octrees provide a simple hierarchical organization of space, they can

suffer from the fact that in general points on a 3D surface cannot be evenly partitioned

into octants. This may lead to an unbalanced and suboptimal data structure. In

contrast, k-d trees [Nievergelt and Widmayer, 1997, Samet, 1990] can guarantee a

fully balanced hierarchical structure. Bounding volume hierarchies (BVHs) have also

been used in rendering to efficiently support spatial queries such as visibility culling

or ray-object intersections [Clark, 1976, Gross and Pfister, 2007, Rusinkiewicz and

Levoy, 2000]. Unlike octrees and k-d trees, a BVH does not necessarily completely

partition space; thus it allows for a more generic and efficient hierarchical organization

of spatial data.

3.3.3 Optimized Spatial Hashing

Spatial hashing is a process by which a 3-D or 2-D domain space is projected into

a 1-D hash table. The hash function takes a 2-D or 3-D data point and returns an

index that corresponds to a 1-D entry in the hash table. Points on an object may

be hashed and the locations can then be quickly queried. Spatial hashing has been

utilized by several fast collision detection algorithms [Eitz and Lixu, 2007, Li et al.,

2008] and has garnered much interest from the gaming industry [Hastings et al., 2005,

Reynolds, 2006].

A “collision” occurs when two distinct elements are assigned into the same position

in the hash table. A perfect hash function for a set S is a hash function that maps

the elements of S into unique integers, with no collisions. Perfect hash functions are

26

rare in the space of all possible functions. Thus, one cannot expect to construct a

perfect hash function for an arbitrary and dynamic set of points. Instead, a hash

function must be developed that minimizes collisions. Lefebvre and Hoppe [2006]

define a GPU-compatible minimal perfect hash function that is pre-computed on

a static set of points. Using this hash function they can pack sparse data into a

compact table while retaining efficient random access. While their GPU algorithm

is efficient, it is not suitable for storing dynamic content. Teschner et al. [2003]

proposed an algorithm for (self-)collision detection of dynamically deforming objects.

Their algorithm employs a hash function for compressing a potentially infinite regular

spatial grid. Although the hash function does not always provide a unique mapping

of points to hash table positions, it can be generated very efficiently and does not

require complex data structures, such as octrees or BSP trees.

3.4 Multiresolution Modeling

There exists a large body of multiresolution editing work based on mesh models

[Zorin et al., 1997, Kobbelt et al., 1998, Guskov et al., 1999, 2002]. Additionally,

multiresolution techniques have been used for mesh compression and simplifications

[Khodakovsky et al., 2000, Laney et al., 2002]. Zorin et al. [1997] defines a set of

editing operators on multiresolution triangular meshes produced via adaptive sub-

divisions. The editing is done locally on a subsection of the surface, which is then

re-triangulated and rendered. The multiresolution adaptive representation provides

an accurate yet efficient framework for editing triangulated surfaces. Schröder [2002]

gives an overview of developments in subdivision surfaces and how these can help dig-

ital geometry processing. Another multiresolution mesh representation is described in

Kobbelt et al. [1998]. A constrained mesh optimization is approximately solved in real

time using multi-level techniques from numerical analysis. Mesh editing is done at a

27

coarse level and then mapped/translated to finer levels. Guskov et al. [1999] provide

techniques for multiresolution mesh processing based on 2nd order divided differences.

They generate a mesh pyramid for irregular meshes through edge-collapse and vertex-

split operations that guarantee minimal distortion. The algorithms are utilized in a

number of applications including smoothing, enhancement, editing and texture map-

ping. The use of irregular meshes supports topology change throughout the hierarchy

and approximates detailed features at multiple scales. However, regular refinements

allow for more efficient data structures and processing algorithms.

A hybrid mesh is a multiresolution surface representation that combines advan-

tages from regular and irregular meshes when processing topologically and geomet-

rically complex surfaces [Guskov et al., 2002]. Hybrid meshes mostly use regular

refinements when subdividing, but also allow occasional irregular operations to grow

extra skin or change topology within the hierarchy. Guskov et al. [2000] introduce

normal meshes, a representation inspired by differential geometry. A normal mesh is a

multiresolution mesh where each level can be written as a normal offset from a coarser

version. Normal meshes are very space- and bandwidth-efficient, describing a surface

as a succinctly specified base shape plus a hierarchical normal map. Hence only a

single float per vertex is needed to represent each level of the mesh. They can be use-

ful in numerous applications such as compression, filtering, rendering, texturing, and

modeling. Although mesh models provide well-designed surface editing frameworks,

they suffer from slower re-meshing and self-intersection repair operations.

The previous work on multiresolution implicit modeling can be organized in two

categories, the systems that utilize semi-Lagrangian methods to solve the hyperbolic

level set equation on an adaptive grid, i.e. an octree [Strain, 1999, Min, 2004, Enright

et al., 2005], and the systems that take a multiresolution approach to solve a specific

problem like image segmentation [Law et al., 2008]. The methods developed in the

28

first category have been used in fluid simulations [Enright et al., 2002b] and medical

image segmentation [Droske et al., 2001]. The second category consists of techniques

that evolve an implicit surface in a multi-grid fashion. These techniques start with

a low-resolution initial approximation to the implicit surface and search for a solu-

tion at the lowest resolution. They then subdivide the pixels around the propagating

front, i.e. the implicit surface, and solve again at this increased resolution. This pro-

cess continues until the final resolution, i.e. the resolution of the original image being

segmented, is reached. A similar approach has also been used for producing implicit

surface reconstructions from multiple depth maps and multiple views of objects [Sarti

and Tubaro, 2001, Slabaugh and Schafer, 2002]. However, to the best of our knowl-

edge, there exists no work on extending these multiresolution/multi-grid techniques

to editing volumetric and level set models.

3.5 Detail Preserving Level Set Method

Level set methods are used to smoothly capture an evolving interface, but suffer

an excessive amount of mass loss in under-resolved regions of the flow. This hinders

the representation of thin interfacial filaments and regions of high curvature. Enright

et al. [2002a] proposed the particle level set method (PLSM) for improving the mass

conservation properties of the level set method when the interface is passively advected

in a flow field. They later presented the semi-Lagrangian-based particle level set

method for fast and accurate capturing of interfaces [Enright et al., 2005]. The particle

level set method has been used during the animation and simulation of smoke and

complex water surfaces [Enright et al., 2002b, Losasso et al., 2004]. One drawback of

this method is that it requires advecting the particles along with the surface at every

step of the simulation. This process is slow at higher resolutions, especially during

substantial modifications to the surface, because large numbers of particles need to

29

be moved several times to reach their destination on the deforming surface. We

believe that a method that can project these particles onto the final surface once the

interactive editing is completed is more beneficial when dealing with larger models.

Since the details are encoded locally, the challenge is to keep the details, i.e. the local

neighborhood of particles, intact after the projection.

3.6 Geometric Texture Transfer

Geometric texture mapping is the 3-dimensional extension of traditional texture

mapping using images. Here, surface characteristics of a 3D model are skinned and

applied onto another model to create a variety of geometric details without the effort

required to manually specify them. Elber [2005] and Zhou et al. [2006] use a stitching

technique to create more geometrically complex surfaces by tiling patterns over thin

shell triangle meshes. Bhat et al. [2004] present a volumetric approach to tiling

patterns in order to create more complex textures. Lai et al. [2005] present an explicit

texture transfer method based on geometry images [Gu et al., 2002]. Andersen et al.

[2009] extend the height field texture representation by incorporating displacements

in the tangential plane in the form of a normal tilt. Shell maps [Porumbescu et al.,

2005] provide a mapping between shell space and texture space that can be used to

generate small-scale features on surfaces using a variety of modeling techniques. The

method is based upon the generation of an offset surface and the construction of a

tetrahedral mesh that fills the space between the base surface and its offset. Schroeder

et al. [2005] present a method capable of producing complex surface features based

on displacement mapping and stochastic geometry. Their method generates a diverse

set of surface models by stochastically defining offset values on triangular meshes

in statistically-consistent patterns. Brodersen et al. [2008] extend these geometry

mapping techniques to level set models. They can warp and blend geometric details

30

using level set surfaces. These details are represented either as a mesh or a level

set surface themselves. The former representation facilitates a fast mapping, while

the latter produces a higher quality surface. Both implicit and explicit techniques

use a particle-based parametrization in 3-dimensions around the base surface, which

adds to the time complexity. The implicit method is significantly slower due to the

extensive number of particles and the use of compute-intensive global radial basis

functions.

31

4. Interactive Level Set Surface Editing

Level set models are used in special effects to perform physically-based simulations

such as fluid flow, as well as to create animations of amorphous characters using

morphing. The simulations often do not generate the desired results and may require

post-processing and clean-ups. Furthermore, the intermediate steps of the simulation

or morphing processes, i.e. keyframes, may also require control and redirection from

the user in order to create specific outcomes. In medicine and science, level set models

are used to perform volume segmentation. The process is dynamic, but not fully

automated, and requires user input to create correct segmentations. The medical field

would greatly benefit from an interactive tool that can provide the user with the ability

to direct the segmentation process while it is underway. Such a capability would allow

the user to rapidly create the correct outcome for the volume segmentation.

Figure 4.1 shows how an interactive editing framework can be used to provide

user control and guidance during the morphing process. This process have been used

to create the Tar Monster shown in Figure 1.3. The initial model is created using an

explicit surface representation and one of the many commercial tools for geometric

Create Source
Model (Explicit)

Scan-convert to
Volumetric Models

Create Target
Model (Explicit)

Morph Source Volume
to Target Volume

Extract explicit
surfaces for
each step

of the morph

Render
Surfaces

Edit Volume

Figure 4.1: Flowchart of the animation pipeline for doing level set morphing

32

modeling. It is then scan-converted into a volumetric representation, in this case a

level set model. Level set morphing [Breen and Whitaker, 2001, Breen et al., 2001]

is used to create an animation sequence. Each frame in the animation sequence is

processed to extract explicit surfaces that are then rendered to complete the pipeline.

Figure 4.2 shows how an interactive editing framework can be used to provide

user control and guidance in the morphing process. An initial morph creates an

animation that morphs a double torus into an ellipsoid. The intermediate level set

result shown in Figure 4.2(b) (within the red box) is then edited by the user to create

an intermediate target shape (drawn within a blue box) that changes the shape of the

object during the transition. Having level set editing capabilities allows the user to

directly modify the intermediate level set model and removes the need for extracting

a surface, importing it into a commercial surface modeling system, editing it, and re-

scan-converting it back into a level set volume. Surface extraction and scan-conversion

are slow and tedious processes that can introduce changes and errors into the model.

This chapter describes the techniques and algorithms we have developed for edit-

ing level set surfaces. The mathematical equations that map user interaction into level

set deformations in order to implement numerous interactive, freeform and sketch-

based level set modeling capabilities have been derived. These capabilities have been

implemented utilizing a pre-existing level set library, and incorporated into an inter-

active modeling system. We have designed several level set speed functions that yield

flexible surface-editing operators. These operators provide the user an intuitive and

straightforward way to interact with 3D level set models using conventional input

devices such as a mouse and keyboard.

A level set surface can be edited through a click-sketch-and-pull interface that

allows a user to identify a point or Region-Of-Influence (ROI) to be modified on

the surface. The concept of an ROI is analogous to 3D brushes used in commercial

33

(a) The initial morph sequence

(b) The middle frame is modified

(c) The final morph sequence

Figure 4.2: Using interactive surface editing to control and direct level set morphing.

34

(a) (b)

Figure 4.3: (a) A cartoon bear created with freeform level set surface editing oper-
ators. (b) A rubber duck is created from a level set sphere and a set of sketched
curves.

packages such as ZBrush. An ROI is specified by drawing a closed curve on the

surface. If no ROI is specified, a superellipsoid or distance function is used to define

what portion of the surface is to be edited. The user may then pull a point or a curve

within the ROI to produce a freeform surface manipulation. Other operators include

surface detailing, carving and smoothing. A painting capability was also added to

the system to allow the user to specify colors on the resulting level set models. The

cartoon bear in Figure 4.3(a) is created using the surface editing capabilities discussed

in Section 4.3.

Additionally, a variety of sketch-based level set modeling capabilities have been

developed. These capabilities include local and global surface editing using single or

multiple curves that are specified on or above a level set surface. The sketch-based

approach allows a user to sketch a curve on, above or near a level set model. The

35

model then evolves in response to the user’s curve-based input to create a surface

that locally matches the shape of the curves. The curves may then be modified,

with the level set surface adjusting to the curve changes. Section 4.2 explains the

interactive techniques used to draw and edit sketch curves. Section 4.4 describes the

sketch-based editing operators. Some of these operators are used to create a rubber

duck in Figure 4.3(b) from a level set sphere and a set of sketch curves.

Our work has developed novel level set modeling functionality and technology. It

provides a general, expressive and interactive set of editing operators for PDE-based

implicit models. Previous work in level set and PDE-based modeling has primarily

focused on volume sculpting and CSG operations. Ours are the first freeform and

sketch-based editing operators developed for level set models. These operators allow

a model to be stretched and shaped, split into pieces and merged smoothly. Topol-

ogy changes occur naturally and automatically because of the properties of level set

models.

4.1 3D User Interaction

Our editing operators require the definition of 3D locations and 3D curves both on

and off the surface using a conventional 3-button mouse. For 3D points on the surface

the display’s Z-buffer is read at the 2D cursor location when the mouse is clicked.

The 3D point in window coordinates is “unprojected” back into world coordinates

to produce a point lying on the model. For specifying 3D points off of the surface,

we offer two methods. The first method provides a helping-plane. During editing

operations the 2D input produced by mouse strokes can be mapped onto an arbitrary

plane within the scene. If utilized, the plane can be added at a point of interest on the

model and displayed in the scene with a translucent color. Initially, the plane’s normal

is set to face the user; however, it can be changed to an arbitrary orientation with

36

a mouse interaction. 2D input is mapped onto the plane during editing operations.

A helping-plane (displayed in translucent yellow) is used in the editing operations

in Figures 4.13, 4.17, 4.18 and 4.24. When specifying a 3D curve, a second method

is available. Here, the 3D curve is defined to lie on a plane perpendicular to the

view direction, and begins at the point where the first mouse click intersects the level

set surface. We utilize an enhanced form of Catmull-Rom splines to specify curves

for the editing operators. These splines provide localized and multiresolution editing

capabilities for 3D curves.

4.2 Localized Editing of Catmull-Rom Splines

There is a large body of research on curves from the 1960s to the present time

[Cohen et al., 2001, Farin, 2002]. Curves are widely used in every aspect of com-

puter graphics, especially splines, which are piecewise polynomial parametric curves.

Splines are popular in CAD because of the simplicity of their construction, their ease

and accuracy of evaluation, and their capacity to define complex shapes during in-

teractive design. Catmull-Rom (C-R) splines [Catmull and Rom, 1974] are a family

of cubic interpolating curves formulated such that the tangent at each control point

is calculated using the previous and next control points on the spline. C-R splines

have C1 continuity, local control, and interpolate their control points, but do not lie

within the convex hull of their control points. We utilize this type of spline in an

interactive surface modeler because of its ability to interpolate every control point.

Direct control point manipulation has been recognized as a powerful computer graph-

ics tool, and yet the strictly defined local influence of C-R control points, while useful

from many perspectives, is limiting and may be a drawback for many freeform editing

applications. In a single control point manipulation operation, one is unable to apply

a modification to the spline shape that affects more than a small neighborhood on

37

the spline, the span between neighboring control points.

Our interactive surface-editing framework uses C-R splines for sketch-based edit-

ing. Mouse strokes are translated into splines that are used to define surface defor-

mations. We employ C-R splines in this setting in order to provide an interactive

and easy-to-use method for curve editing. C-R spline’s ability to interpolate con-

trol points is an important feature, one that allows us to accurately translate user

input into a mathematical representation. In order to overcome the immediate neigh-

borhood limitation when modifying C-R splines, we describe an approach for the

localized, interactive editing of C-R splines. To provide greater flexibility, control

and expressiveness, we have developed techniques that expand and generalize the

result of modifying one C-R control point. The techniques allow the user to define

the range and type of influence that manipulation of a single control point may pro-

duce on a C-R curve, thus creating a versatile and powerful localized curve editing

capability.

Localized editing gives the user more control over the shape of the spline when

moving a single control point. An active window is defined around the control point

selected by the user, and it limits the resulting modifications to a user-defined segment

of the curve. The extent of the window can be changed by the user any time during

editing. We provide a variable-resolution editing framework that lets the user specify

the control point resolution within the active window. This enables the user to

increase the density of the control points where more detail is needed, and makes

that part of the curve more controllable. However, due to the locality of C-R splines,

any change to a single control point only changes the portion of the curve between the

control point and its neighboring control points. The dense sampling of the control

points provides the means for creating fine details, but it also makes it difficult to

specify changes at varying spatial scales. The active window therefore gives the user

38

control over the range of influence associated with a single control point editing stroke.

The movement of this single control point is distributed to every control point within

the window. The main issue to be addressed is how to transfer the modifications

made by the user when dragging a single control point to the other control points

within the active window. Our work proposes techniques for distributing the motion

of a single C-R control point within an active window in order to produce an intuitive

and expressive localized spline editing functionality. Several techniques are described

and their results are compared in this section.

The curves in our editing system are drawn by the user either on a reference plane

or directly on the surface. As the user clicks and drags the cursor, several control

points are captured that follow the cursor’s movements. The sampling of the control

points is directly related to the speed of the user’s strokes. In other words, slower,

more detailed input creates a denser sampling and a more accurate representation of

the curve, while a faster and free-handed drawing leads to a less detailed curve. A

C-R spline is fit to these control points once the mouse button is released. The first

and last control points are inserted multiple times to force the curve to interpolate

both end points. A discrete sampling of the points on the curve is displayed to the

user as a polyline. The sampling rate used to display the curve is user-controlled and

can be changed during the editing session. The control points and the boundary of

the active window are highlighted while drawing the curve to aid interactive editing.

The curve can be further modified by the user through our localized editing interface.

The editing interface provides the user with several options for modifying C-R splines.

The user can set an active window size to ensure only a certain part of the curve is

modified with each stroke. This window can also be interactively changed to fit the

user’s needs. Once the curve is drawn and a window size is set, editing is achieved

by clicking on a control point and dragging it to a new position. The active window

39

need not be symmetric. The user can shift either end of the window to change its

extent. All the control points within the active window around the dragged control

point are moved following one of the user-defined schemes described in Sections 4.2.3

and 4.2.4. The curve is fit to the new set of control points after every editing step,

and the user is provided with immediate feedback of the overall shape of the curve

while editing. The number of control points within the active window can also be

changed by the user in order to provide more detailed, higher resolution editing. The

number of control points may also be reduced within the window as well.

The movement of the control points within the active window can be described

through a set of schemes that modify all the other control points within the window

as a function of the displacement of the selected control point. Two alternate ideas,

interpolating the displacement of the selected control point within the active window,

and interpolating the displacement vector with a vector orthogonal to the curve, are

described in the following sections.

4.2.1 Active Window

Defining an active window gives the user control over the range of control points

that are to be affected by a single editing stroke. The movement of a single control

point is distributed to every control point within the window. The window size cannot

be larger than the curve itself. The active window is set to be the start and end points

of the curve in case the window size is greater than the curve. The window is centered

at the control point being dragged, but the extent need not be symmetric.

The window size is defined as a number of control points nR to the right and

mL to the left of the selected/modified control point. For example, the window can

span 3 control points on the left and 4 control points on the right. This can either

occur if the window size is set to four, but a control point that is 3 control points

40

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

4

3.1 Active Window
Defining an active window gives the user control over the range of control points that are to be
affected by a single editing stroke. The movement of a single control point is distributed to every
control point within the window. The window size cannot be larger than the curve itself. The active
window is set to be the start and end points of the curve in case the window size is greater than the
curve. The window is centered at the control point being dragged, but the extent need not be
symmetric. The window size is defined as a number of control points n

R
 to the right and m

L
 to the left

of the selected/modified control point. For example, the window can span 3 control points on the left
and 4 control points on the right. This can either occur if the window size is set to four, but a control
point that is 3 control points from a curve boundary is selected, or if the user adjusts the left or right
end of the window interactively. At any time the boundary of the active window is highlighted and the
user can adjust the window size on either side by moving these highlighted points. Figure 1
demonstrates editing with a symmetric active window, as well as the results from changing the window
size.

Fig. 1: Changing the active window size. Top: Only the displacement is interpolated. Bottom: Both the
displacement and the normals are interpolated. Left-to-right: Editing with window size = 5 control
points. Middle: Editing with window size = 10. Right: Active window spans the whole curve. The blue
arrows show the movement of the control points within the active window.

3.2 Multi-resolution Control
The resolution of the control points within the active window is user-defined. The control points
derived from user input are non-uniform and their sampling resolution is directly proportional to the
speed of the input strokes. We found it useful to work with a uniform sampling of control points in
most cases, so we have incorporated an option to redefine the curve with a new set of control points
that are evenly distributed over the curve. Once the initial control points are inputted, a C-R spline is fit
to these points. If the option to uniformly sampling the control points is chosen, a new set of control
points is created by evenly sampling the curve, and a new curve is fit to these control points. The
number of control points is kept the same during this operation. However, the user may also
increase/decrease the number of control points immediately after the curve is resampled.

In cases where a part of the curve is stretched or condensed, the resolution on the modified portion of
the curve may need to be adjusted. The user can either chose to resample the curve within the active
window with the same resolution as the rest of the curve or increase/decrease the resolution of the
control points within the active window. This resampling is also uniform but the resolution can be
higher or lower than the rest of the curve. Once the active window is placed over another portion of the
curve, the resolution in the previous active window stays fixed until it is once again edited by the user.
This kind of variable-resolution control combined with a flexible, i.e. asymmetric, active window
enables us to define very specific parts of the curve to be edited. Rough sketches can be created by
lowering the resolution and working with a larger active window. Then more control points can be
added where needed to provide additional detail and control.

3.3 Interpolating the Control Point Displacement
The first approach taken to solving the problem of distributing control point displacement within the
active window sets the direction of the displacement to be the same for all control points within the
window. The magnitude of the displacement monotonically decreases from the control point being

Figure 4.4: Changing the active window size. Top: Only the displacement is inter-
polated. Bottom: Both the displacement and the normals are interpolated. Left-to-
right: Editing with window size = 5 control points. Middle: Editing with window size
= 10. Right: Active window spans the whole curve. The blue lines show the move-
ment of the control points within the active window. The red dots are the control
points.

from a curve boundary is selected, or if the user adjusts the left or right end of the

window interactively. At any time the boundary of the active window is highlighted

and the user can adjust the window size on either side by moving these highlighted

points. Figure 4.4 demonstrates editing with a symmetric active window, as well as

the results from changing the window size.

4.2.2 Multiresolution Control

The resolution of the control points within the active window is user-defined. The

control points derived from user input are non-uniform and their sampling resolution

is directly proportional to the speed of the input strokes. We found it useful to work

with a uniform sampling of control points in most cases, so we have incorporated

an option to redefine the curve with a new set of control points that are evenly

distributed over the curve. Once the initial control points are inputted, a C-R spline

is fit to these points. If the option to uniformly sample the control points is chosen,

a new set of control points is created by evenly sampling the curve, and a new curve

is fit to these control points. The number of control points is kept the same during

41

this operation. However, the user may also increase/decrease the number of control

points immediately after the curve is resampled.

In cases where a part of the curve is stretched or condensed, the resolution on the

modified portion of the curve may need to be adjusted. The user can either choose to

resample the curve within the active window with the same resolution as the rest of

the curve or increase/decrease the resolution of the control points within the active

window. This resampling is also uniform, but the resolution can be higher or lower

than the rest of the curve. Once the active window is placed over another portion

of the curve, the resolution in the previous active window stays fixed until it is once

again edited by the user. This kind of variable-resolution control combined with a

flexible, i.e. asymmetric, active window enables us to define very specific parts of the

curve to be edited. Rough sketches can be created by lowering the resolution and

working with a larger active window. Then more control points can be added where

needed to provide additional detail and control.

4.2.3 Interpolating the Control Point Displacement

The first approach taken to solving the problem of distributing control point

displacement within the active window sets the direction of the displacement to be

the same for all control points within the window. The magnitude of the displacement

monotonically decreases from the control point being modified to the boundaries of

the window. There are two properties needed for the function that implements this

kind of drop off in order to create an acceptable result. The function should be smooth

and it should go to zero at the boundaries to avoid discontinuities. We have tested

several such functions and found three that provide the desired smooth transitions

(Equations 4.1, 4.2 & 4.3). These equations include a linear, Gaussian and a cosine

function that all decrease from 1 to 0 within the window range. Equation 4.2 uses a

42

second function f(x) to ensure proper boundary conditions, since the Gaussian does

not go to zero in a finite range.

1− d

W
(4.1)

f(W − d)e
−d2

2σ2 (4.2)

σ = W/5

f(x) =


1.0 x > ε

(x/ε)2 x ≤ ε,

1

2
+

1

2
cosα

(
d

W
π

)
(4.3)

d is the distance (over the curve) to the center of the window, i.e. the control

point being modified by the user, and W is a window size defined for each side of

the active window, either WR or WL. f is a function that ensures the whole equation

goes to zero smoothly. It is equal to 1 up to a small distance from the boundary of

the window (ε = σ in our examples) and goes to zero smoothly at the boundary.

Figures 4.5(a) and 4.5(b) present curves produced from interpolating the control

point displacement and using the three drop-off functions. Figure 4.5(a) applies the

change to the entire curve and Figure 4.5(b) uses a symmetric active window of size 5.

Equation 4.3 created the best results in terms of a smooth and intuitive interaction,

and we use this function in the final examples presented in this section (Figures 4.10-

4.12). Figure 4.6 shows a case where the curve is edited twice, once pulled towards

the left and once towards the right. Although the results are good, moving all control

points in the same direction is not always satisfactory for our purposes. Section 4.2.5

43

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

5

modified to the boundaries of the window. There are two properties needed for the function that
implements this kind of drop off in order to create an acceptable result. The function should be
smooth and it should go to zero at the boundaries to avoid discontinuities. We have tested several
such functions and found three that provide the desired smooth transitions (Equations 1, 2 & 3). These
equations include a linear, Gaussian and a cosine function that all decrease from 1 to 0 within the
window range. Equation (2) uses a second function (f(d)) to ensure proper boundary conditions, since
the Gaussian does not go to zero in a finite range.

Linear:

!

1"
d

W
 (1)

Gaussian:

!

f (W " d)e

"d
2

2# 2

 (2)

!

" =W /5

!

f (x) =
1.0 x > "

(x /")2 x # "

$
%
&

Sinusoidal:

!

1

2
+
1

2
cos

"
(
d

W
) (3)

d is the distance (over the curve) to the center of the window, i.e. the control point being modified by

the user, and W is a window size defined for each side of the active window, either W
R
 or W

L
.

f is a function that ensures the whole equation goes to zero smoothly. It is equal to 1 up to a small
distance from the boundary of the window (!=" in our examples) and goes to zero smoothly at the

boundary.

Figures 2 and 3 present curves produced from interpolating the control point displacement and using
the three drop-off functions. Figure 2 applies the change to the entire curve and Figure 3 uses a
symmetric active window of size 5. Equation 3 created the best results in terms of a smooth and
intuitive interaction and we use this function in the final examples presented in Section 4. Figure 4
shows a case where the curve is edited twice, once pulled towards the left and once towards the right.
Although the results are good, moving all control points in the same direction is not always
satisfactory for our purposes. Section 3.4 describes another scheme for calculating the offset direction
for all control points in the active window.

Fig. 2: Distributing the displacement of the control point on the entire curve. Left to right: Linearly
decreasing function in Equation 1, exponentially decreasing function in Equation 2, sinusoidal function
in Equation 3 (#=1.0). Three curves are drawn in each case: Initial curve, local effect of moving one

control point, and the curve after distributing the movement to all control points.

(a) Distributing the displacement of the control point on the entire curve.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

6

Fig. 3: Distributing the displacement of the control point within the active window. Window size=5. Left
to right: Linearly decreasing function in Equation 1, exponentially decreasing function in Equation 2,
sinusoidal function in Equation 3 (!=1.0). Three curves are drawn in each case: Initial curve, local effect

of moving one control point, and the curve after distributing the movement to all control points.

Fig. 4: The result of distributing the displacement of the control point. The same curve is modified
twice by pulling the same control point in two different directions. Green arrows show displacement of
one control point during editing.

The sinusoidal interpolant may be further adjusted to produce a variety of results. The parameter ! is

the exponent of the cosine in Equation 3. Setting the parameter to something other than 1 changes the
shape of the curve in the active window. As seen in Figure 5, a value of ! less than 1 begins to square

off the modified section of the curve. Increasing !’s value above 1 creates a faster drop-off in the

displacement and a sharper hump in the curve.

Fig. 5: The result of changing ! in Equation 3. Left to right: !=0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0.

3.4 Interpolating the Curve Normal
We further investigated distributing the direction of the control point movement within the active
window, and tested two other solutions that led to another approach to localized editing of Catmull-
Rom splines. One way to move the control points is to let the points move in the direction normal to
the curve. Although this appears to be a natural way to move the control points, it did not produce
acceptable results. This approach leads to unwanted deformations because it gradually
expands/shrinks the portion of the curve within the window. The second approach interpolates the
selected control point displacement with the curve’s normal at the endpoints of the active window,
while decreasing the magnitude of the offset using either Equation 1, 2 or 3. We use spherical linear
interpolation (slerp) [11] to calculate intermediate vectors between the displacement of the selected
control point and the curve normals at the boundaries of the window. All vectors are initially unit
vectors that are then scaled according to functions described in Section 3.3 to create a set of
displacement vectors for control points in the active window.

!

D
0
" S d()" slerp ˆ D

0
, ˆ N n ,d() (4)

(b) Distributing the displacement of the control point within the active window. Window size=5.

Figure 4.5: Left to right: Linearly decreasing function in Equation 4.1, exponentially
decreasing function in Equation 4.2, sinusoidal function in Equation 4.3 (α = 1.0).
Three curves are drawn in each case: Initial curve, local effect of moving one control
point, and the curve after distributing the movement to all control points.

describes another scheme for calculating the offset direction for all control points in

the active window.

The sinusoidal interpolant may be further adjusted to produce a variety of results.

The parameter α is the exponent of the cosine in Equation 4.3 . Setting the parameter

to something other than 1 changes the shape of the curve in the active window. As

seen in Figure 4.7 , a value of α less than 1 begins to square off the modified section of

the curve. Increasing α’s value above 1 creates a faster drop-off in the displacement

and a sharper bump in the curve.

4.2.4 Interpolating the Curve Normal

We further investigated distributing the direction of the control point movement

within the active window, and tested two other solutions that led to another approach

to localized editing of Catmull-Rom splines. One way to move the control points is

to let the points move in the direction normal to the curve. Although this appears to

44

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

6

Fig. 3: Distributing the displacement of the control point within the active window. Window size=5. Left
to right: Linearly decreasing function in Equation 1, exponentially decreasing function in Equation 2,
sinusoidal function in Equation 3 (!=1.0). Three curves are drawn in each case: Initial curve, local effect

of moving one control point, and the curve after distributing the movement to all control points.

Fig. 4: The result of distributing the displacement of the control point. The same curve is modified
twice by pulling the same control point in two different directions. Green arrows show displacement of
one control point during editing.

The sinusoidal interpolant may be further adjusted to produce a variety of results. The parameter ! is

the exponent of the cosine in Equation 3. Setting the parameter to something other than 1 changes the
shape of the curve in the active window. As seen in Figure 5, a value of ! less than 1 begins to square

off the modified section of the curve. Increasing !’s value above 1 creates a faster drop-off in the

displacement and a sharper hump in the curve.

Fig. 5: The result of changing ! in Equation 3. Left to right: !=0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0.

3.4 Interpolating the Curve Normal
We further investigated distributing the direction of the control point movement within the active
window, and tested two other solutions that led to another approach to localized editing of Catmull-
Rom splines. One way to move the control points is to let the points move in the direction normal to
the curve. Although this appears to be a natural way to move the control points, it did not produce
acceptable results. This approach leads to unwanted deformations because it gradually
expands/shrinks the portion of the curve within the window. The second approach interpolates the
selected control point displacement with the curve’s normal at the endpoints of the active window,
while decreasing the magnitude of the offset using either Equation 1, 2 or 3. We use spherical linear
interpolation (slerp) [11] to calculate intermediate vectors between the displacement of the selected
control point and the curve normals at the boundaries of the window. All vectors are initially unit
vectors that are then scaled according to functions described in Section 3.3 to create a set of
displacement vectors for control points in the active window.

!

D
0
" S d()" slerp ˆ D

0
, ˆ N n ,d() (4)

Figure 4.6: The result of distributing the displacement of the control point. The same
curve is modified twice by pulling the same control point in two different directions.
Green arrows show displacement of one control point during editing.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

6

Fig. 3: Distributing the displacement of the control point within the active window. Window size=5. Left
to right: Linearly decreasing function in Equation 1, exponentially decreasing function in Equation 2,
sinusoidal function in Equation 3 (!=1.0). Three curves are drawn in each case: Initial curve, local effect

of moving one control point, and the curve after distributing the movement to all control points.

Fig. 4: The result of distributing the displacement of the control point. The same curve is modified
twice by pulling the same control point in two different directions. Green arrows show displacement of
one control point during editing.

The sinusoidal interpolant may be further adjusted to produce a variety of results. The parameter ! is

the exponent of the cosine in Equation 3. Setting the parameter to something other than 1 changes the
shape of the curve in the active window. As seen in Figure 5, a value of ! less than 1 begins to square

off the modified section of the curve. Increasing !’s value above 1 creates a faster drop-off in the

displacement and a sharper hump in the curve.

Fig. 5: The result of changing ! in Equation 3. Left to right: !=0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0.

3.4 Interpolating the Curve Normal
We further investigated distributing the direction of the control point movement within the active
window, and tested two other solutions that led to another approach to localized editing of Catmull-
Rom splines. One way to move the control points is to let the points move in the direction normal to
the curve. Although this appears to be a natural way to move the control points, it did not produce
acceptable results. This approach leads to unwanted deformations because it gradually
expands/shrinks the portion of the curve within the window. The second approach interpolates the
selected control point displacement with the curve’s normal at the endpoints of the active window,
while decreasing the magnitude of the offset using either Equation 1, 2 or 3. We use spherical linear
interpolation (slerp) [11] to calculate intermediate vectors between the displacement of the selected
control point and the curve normals at the boundaries of the window. All vectors are initially unit
vectors that are then scaled according to functions described in Section 3.3 to create a set of
displacement vectors for control points in the active window.

!

D
0
" S d()" slerp ˆ D

0
, ˆ N n ,d() (4)

Figure 4.7: The result of changing α in Equation 4.3. Left to right: α = 0.1, 0.25,
0.5, 0.75, 1.0, 2.0, 3.0, 4.0.

be a natural way to move the control points, it did not produce acceptable results.

This approach leads to unwanted deformations because it gradually expands/shrinks

the portion of the curve within the window. The second approach interpolates the

selected control point displacement with the curve’s normal at the endpoints of the

active window, while decreasing the magnitude of the offset using either Equation 4.1,

4.2 or 4.3. We use spherical linear interpolation (slerp) [Shoemake, 1985] to calculate

intermediate vectors between the displacement of the selected control point and the

curve normals at the boundaries of the window. All vectors are initially unit vectors

that are then scaled according to functions described in Section 4.2.3 to create a set

of displacement vectors (~Di) for control points in the active window:

45

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

7

D
0
 is the displacement of the selected control point. N

n
 is the curve normal at one of the boundaries of

the active window, where n is the window size. The normals at n
R
 or n

L
 are used depending on which

side of the window is being processed.

Both of these vectors are normalized before being interpolated. d is the distance along the curve to the
center of the window. S(d) is one of the scaling functions in Equations 1 to 3. This approach created the
best results in terms of smoothness and fairness of the resulting curve. Figures 6 and 7 contain results
from this method using the three drop-off functions and two active window sizes.

Fig. 6: Interpolating control point displacement with the curve normal at curve end points using
spherical linear interpolation. The green arrow represents the editing stroke. Left to right: Linearly
decreasing function in Equation 1, exponentially decreasing function in Equation 2, sinusoidal function
in Equation3. The active window spans the whole curve.

Fig. 7: Interpolating control point displacement with the curve normal at the window boundary using
spherical linear interpolation. Window size=5. The green arrow represents the editing stroke. Left to
right: Linearly decreasing function in Equation 1, exponentially decreasing function in Equation 2,
sinusoidal function in Equation 3.

3.4 Editing Tangent Vectors At Control Points
We also explored the affects of editing tangent vectors at control points as an additional means for
manipulating the curves. The tangents are initially calculated by averaging control points as explained
in [2] for C-R curves. The user then can put the system in tangent editing mode and only the control
points with their tangent vectors are displayed, instead of the curve itself. Clicking and pulling on the
displayed lines representing the tangents can manipulate these vectors. Both the direction and size of
the tangents can be changed. Figure 8 shows an example of changing a C-R curve’s tangents to edit its
shape.

(a) Interpolating control point displacement with the curve normal at curve end points using spherical
linear interpolation. The active window spans the whole curve.

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

7

D
0
 is the displacement of the selected control point. N

n
 is the curve normal at one of the boundaries of

the active window, where n is the window size. The normals at n
R
 or n

L
 are used depending on which

side of the window is being processed.

Both of these vectors are normalized before being interpolated. d is the distance along the curve to the
center of the window. S(d) is one of the scaling functions in Equations 1 to 3. This approach created the
best results in terms of smoothness and fairness of the resulting curve. Figures 6 and 7 contain results
from this method using the three drop-off functions and two active window sizes.

Fig. 6: Interpolating control point displacement with the curve normal at curve end points using
spherical linear interpolation. The green arrow represents the editing stroke. Left to right: Linearly
decreasing function in Equation 1, exponentially decreasing function in Equation 2, sinusoidal function
in Equation3. The active window spans the whole curve.

Fig. 7: Interpolating control point displacement with the curve normal at the window boundary using
spherical linear interpolation. Window size=5. The green arrow represents the editing stroke. Left to
right: Linearly decreasing function in Equation 1, exponentially decreasing function in Equation 2,
sinusoidal function in Equation 3.

3.4 Editing Tangent Vectors At Control Points
We also explored the affects of editing tangent vectors at control points as an additional means for
manipulating the curves. The tangents are initially calculated by averaging control points as explained
in [2] for C-R curves. The user then can put the system in tangent editing mode and only the control
points with their tangent vectors are displayed, instead of the curve itself. Clicking and pulling on the
displayed lines representing the tangents can manipulate these vectors. Both the direction and size of
the tangents can be changed. Figure 8 shows an example of changing a C-R curve’s tangents to edit its
shape.

(b) Interpolating control point displacement with the curve normal at the window boundary using
spherical linear interpolation. Window size=5.

Figure 4.8: The green arrow represents the editing stroke. Left to right: Linearly
decreasing function in Equation 4.1, exponentially decreasing function in Equation
4.2, sinusoidal function in Equation 4.3.

~Di =
∣∣∣ ~D0

∣∣∣× S(di)× slerp
(

~D0, ~Nn, di

)
. (4.4)

~D0 is the displacement of the selected control point. ~Nn is the curve normal at

one of the boundaries of the active window, where n is the window size. The normals

at nR or nL are used depending on which side of the window is being processed. Both

of these vectors are normalized before being interpolated. di is the distance along the

curve from control point i to the center of the window. S(di) is one of the scaling

functions in Equations 4.1 to 4.3. This approach created the best results in terms of

smoothness of the resulting curve as well as the most intuitive response to moving a

single control point. Figures 4.8(a) and 4.8(b) show results from this method using

the three drop-off functions and two active window sizes.

46

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

8

Fig. 8: Editing tangent vectors at control points. The control points are highlighted in red and the
tangent vectors are drawn as blue lines. The vectors are drawn at each control point and the blue
points at the end of each vector can be picked and modified resulting in new tangent vectors. Left: Top
to bottom: The original C-R curve, original tangents, modified tangents. Right: The final curve after
modifying the tangents, drawn with and without the control points highlighted.

(a) (b) (c) (d) (e)

Fig. 9: The rough, non-uniform user input (a-b) is sampled uniformly and smoothed (c). Pulling the
point highlighted in purple outwards creates the nose (d). The resolution in the active window is
increased for further editing. The tip of the nose is pulled down to create the nose in (e). The active
window boundaries are highlighted in green and blue. The editing is applied to the point highlighted in
purple.

4. RESULTS

Here we demonstrate the variable-resolution, localized editing capabilities of the curve-editing
approach. Figures 9-11 shows intermediate steps from an editing session that defines a facial profile.
Figure 10-f presents the final result of the session. The initial user input (Figures 9a-b) is neither
smooth nor uniform. First a uniform sampling of the control points at a user-defined resolution is
produced (Figure 9c). Pulling the point highlighted in purple in Figure 9d outwards creates the nose.
This operation stretches the area around the tip of the nose. The user chooses to resample this part of
the curve to increase the resolution for further editing. Figures 10a-e show how variable-resolution

Figure 4.9: Editing tangent vectors at control points. The control points are high-
lighted in red and the tangent vectors are drawn as blue lines. The vectors are drawn
at each control point, and the blue points at the end of each vector can be picked and
modified, resulting in new tangent vectors. Left: Top to bottom: The original C-R
curve, original tangents, modified tangents. Right: The final curve after modifying
the tangents, drawn with and without the control points highlighted.

4.2.5 Editing Tangent Vectors At Control Points

We also explored the effects of editing tangent vectors at control points as an

additional means for manipulating the curves. The tangents are initially calculated

by averaging control points as explained in Catmull and Rom [1974] for C-R curves.

The user then can put the system in tangent editing mode, and only the control

points with their tangent vectors are displayed instead of the curve itself. Clicking

and pulling on the displayed lines representing the tangents can manipulate these

vectors. Both the direction and size of the tangents can be changed. Figure 4.9

shows an example of changing a C-R curve’s tangents to edit its shape.

4.2.6 Results

Figures 4.10 through 4.12 demonstrate the variable-resolution, localized editing

capabilities of the curve-editing approach. They show intermediate steps from an

47

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

8

Fig. 8: Editing tangent vectors at control points. The control points are highlighted in red and the
tangent vectors are drawn as blue lines. The vectors are drawn at each control point and the blue
points at the end of each vector can be picked and modified resulting in new tangent vectors. Left: Top
to bottom: The original C-R curve, original tangents, modified tangents. Right: The final curve after
modifying the tangents, drawn with and without the control points highlighted.

(a) (b) (c) (d) (e)

Fig. 9: The rough, non-uniform user input (a-b) is sampled uniformly and smoothed (c). Pulling the
point highlighted in purple outwards creates the nose (d). The resolution in the active window is
increased for further editing. The tip of the nose is pulled down to create the nose in (e). The active
window boundaries are highlighted in green and blue. The editing is applied to the point highlighted in
purple.

4. RESULTS

Here we demonstrate the variable-resolution, localized editing capabilities of the curve-editing
approach. Figures 9-11 shows intermediate steps from an editing session that defines a facial profile.
Figure 10-f presents the final result of the session. The initial user input (Figures 9a-b) is neither
smooth nor uniform. First a uniform sampling of the control points at a user-defined resolution is
produced (Figure 9c). Pulling the point highlighted in purple in Figure 9d outwards creates the nose.
This operation stretches the area around the tip of the nose. The user chooses to resample this part of
the curve to increase the resolution for further editing. Figures 10a-e show how variable-resolution

Figure 4.10: The rough, non-uniform user input (a-b) is sampled uniformly and
smoothed (c). Pulling the point highlighted in purple outwards creates the nose (d).
The resolution in the active window is increased for further editing. The tip of the
nose is pulled down to create the nose in (e). The active window boundaries are
highlighted in green and blue. The editing is applied to the point highlighted in
purple

editing session that defines a facial profile. Figure 4.11(f) presents the final result of

the session. The initial user input (Figures 4.10(a-b)) is neither smooth nor uniform.

First a uniform sampling of the control points at a user-defined resolution is produced

(Figure 4.10(c)). Pulling the point highlighted in purple in Figure 4.10(d) outwards

creates the nose. This operation stretches the area around the tip of the nose. The

user chooses to resample this part of the curve to increase the resolution for further

editing. Figures 4.11(a-e) show how variable-resolution control and localized editing

is utilized to create the mouth and chin. In order to create a rounder nose tip the user

limits the active window to a small part of the curve around the nose and increases

the resolution (Figure 4.12(a)). Figure 4.12(b) and 4.12(c) show the editing of the

nose. We added 3 more curves to roughly define the eye. Similar techniques are used

to create and modify these additional curves.

48

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

9

control and localized editing is utilized to create the mouth and chin. In order to create a rounder nose
tip the user limits the active window to a small part of the curve around the nose and increases the
resolution (Figure 11a). Figure 11b and 11c shows the editing of the nose. We added 3 more curves to
roughly define the eye. Similar techniques are used to create and modify these additional curves.

(a) (b) (c) (d) (e) (f)

Fig. 10: The user works at different resolutions to create the mouth. The active window boundaries are
highlighted in green and blue. The editing is applied to the point highlighted in purple. The entire
curve is resampled in (e). The final result from sketching a profile is shown in (f.

Fig. 11: The user works at different resolutions to edit the nose. The active window boundaries are
highlighted in green and blue. The editing is applied to the point highlighted in purple.

We utilize our curve-editing tool in an interactive level-set surface-editing framework [6]. The surfaces
are deformed using curves as outlines to the final shapes. We have included an example from this
system in Figure 12. A sphere and a cross sectional curve is used to create a rubber duck.

Fig. 12: A C-R curve is drawn and edited to look like a rubber duck. A level-set sphere model is evolved
to fit this curve using sketch-based editing techniques. The final image is further edited using free-
form editing operators [6].

Figure 4.11: The user works at different resolutions to create the mouth. The active
window boundaries are highlighted in green and blue. The editing is applied to the
point highlighted in purple. The entire curve is resampled in (e). The final result
from sketching a profile is shown in (f).

Computer-Aided Design & Applications, 6(1-4), 2009, xxx-yyy

9

control and localized editing is utilized to create the mouth and chin. In order to create a rounder nose
tip the user limits the active window to a small part of the curve around the nose and increases the
resolution (Figure 11a). Figure 11b and 11c shows the editing of the nose. We added 3 more curves to
roughly define the eye. Similar techniques are used to create and modify these additional curves.

(a) (b) (c) (d) (e) (f)

Fig. 10: The user works at different resolutions to create the mouth. The active window boundaries are
highlighted in green and blue. The editing is applied to the point highlighted in purple. The entire
curve is resampled in (e). The final result from sketching a profile is shown in (f.

Fig. 11: The user works at different resolutions to edit the nose. The active window boundaries are
highlighted in green and blue. The editing is applied to the point highlighted in purple.

We utilize our curve-editing tool in an interactive level-set surface-editing framework [6]. The surfaces
are deformed using curves as outlines to the final shapes. We have included an example from this
system in Figure 12. A sphere and a cross sectional curve is used to create a rubber duck.

Fig. 12: A C-R curve is drawn and edited to look like a rubber duck. A level-set sphere model is evolved
to fit this curve using sketch-based editing techniques. The final image is further edited using free-
form editing operators [6].

Figure 4.12: The user works at different resolutions to edit the nose. The active
window boundaries are highlighted in green and blue. The editing is applied to the
point highlighted in purple.

49

4.3 Freeform Editing Operators

Our freeform editing operators draw inspiration from many previous modeling

techniques, and bring their editing capabilities to level set models. For example, our

point-based operators are similar to those in Ferley et al. [2001], McDonnell et al.

[2001], Angelidis et al. [2006], Owada et al. [2003], Bærentzen and Christensen [2002].

Our operator that allows a user to pull a curve attached to a surface is comparable

to an editing capability found in the Wires system [Singh and Fiume, 1998]. Carving

and detailing tools can also be found in Perng et al. [2001], Wang and Kaufman

[1995], Ferley et al. [2000, 2001], Angelidis et al. [2006]. This section describes how to

design custom speed functions based on user interaction in order to create freeform

deformations for level set surfaces.

4.3.1 Pulling a point, symmetric ROI

This operator allows a user to click on a point on the surface (xs) and drag it.

Clicking creates a tracker particle on the surface at xs. A part of the surface, defined

by a radius of influence around xs, then moves outward. As the 3D cursor location

(xc) changes the tracker particle moves toward xc, but is constrained to stay on the

deforming surface; thus defining an updated xs value for the surface evolution. The

new position of xs lies on the line connecting the old position of xs to xc, where this

line intersects the surface. The evolution stops once the tracker particle reaches the

3D cursor location or the mouse button is released. The radius value may be changed

any time during the movement. The operator produces a symmetric modification

around xs. While this is the simplest of editing operators, we did find it useful for

designing and creating handle-like structures, e.g. in Figure 4.13.

50

Helping plane Helping plane

Figure 4.13: A loop is created by clicking and dragging a point on the surface (α =
2.0). The first two frames demonstrate the use of the helping plane (the yellow
background). The last frame shows several loops smoothly merged with each other.

The speed function that implements this operator is

F (x) =


cosα(π

2
∗ ds(x)

r
) ds(x) ≤ r

0 ds(x) > r,

(4.5)

where x is a point on the surface being evaluated, and ds(x) is the geodesic distance

from the point x to the point being dragged, i.e. xs. The geodesic distance between

xs and all the voxels within the ROI can be calculated using the sweeping algorithm

explained in Section 4.5 and Algorithm 1. Equation 4.5 states that the speed of the

surface evolution drops off with a cosine function depending on the distance from

the dragged point. The speed goes smoothly to zero at distance r (the edge of

the ROI). The shape of the drop-off may be controlled by the parameter α, which

exponentiates the cosine function. Figure 4.13 shows a surface being edited using this

operator (α = 2.0). Figure 4.14 demonstrates the different bump shapes created by

varying α.

51

Figure 4.14: Effect of changing the α parameter in Equation 4.5. α = 0.25, 0.5, 0.75,
1.0, 2.0, 3.0, 4.0.

Figure 4.15: Deforming a patch on the surface by defining an ROI with a boundary
curve and pulling a point. α = 4. ε = 5 voxels.

4.3.2 Pulling a point, arbitrary ROI

For this operator the user first draws a closed boundary curve (Cb) on the surface

to designate an ROI, then clicks and drags a point (xs) within the ROI. All points

in the ROI move outward, with the points closest to xs moving the fastest. The

ROI’s surface speed gradually decreases to zero at the boundary curve. As with the

previous operator the tracker particle xs moves towards the cursor’s 3D location (xc),

but remains on the surface. The surface movement stops either when xs reaches xc

or when the user releases the mouse button. In Figure 4.15, a Cb curve, defined by

the red control points, is drawn in yellow. The user clicks and drags a point upwards

and then to the left to produce a surface modification.

52

The speed function for the operator is

F (x) = f(dout(x)) ∗
(

max(dxs
in (x))− dxs

in (x)

max(dxs
in (x))

)α

(4.6)

f(d) =


1/2− 1/2 ∗ cos(π ∗ d(x)/ε) d ≤ ε

1.0 d > ε,

(4.7)

where dxs
in (x) is the geodesic distance to xs from x, max(dxs

in (x)) is the maximum of

these values over all points in the ROI, and dout(x) is the geodesic distance to the

boundary curve from x. The first term, f(dout(x)), ensures that the speed smoothly

goes to zero at the boundary curve starting at some distance ε from the boundary.

ε is a user-defined parameter. The second term of the equation decreases the speed

as the point on the surface (x) gets further from the point being dragged (xs). α is

once again a parameter that controls the shape of the “bump” pulled up from the

surface. Increasing α produces a faster drop-off. Examples of varying the α parameter

are given in Figure 4.16. The geodesic distance dxs
in (x) is calculated by sweeping out

distance information from xs to voxels that lie on the surface using Algorithm 1 (see

Section 4.5).

4.3.3 Pulling a curve on the surface, symmetric ROI

With this operator the user draws an open curve Cs on the surface, clicks on the

curve, and then drags it. The surface near the curve moves out to follow the curve.

All points on the surface within a specified distance from Cs move with a speed that

decreases proportionally to their distance from the curve. In Figure 4.17, the curve

is first pulled up, then dragged slightly towards the right. Observe that the surface

bends slightly as it follows the user’s input.

53

(a) α = 1 (b) α = 2 (c) α = 3

(d) α = 4 (e) α = 6 (f) α = 9

Figure 4.16: The α parameter in Equation 4.6 changes the shape of the modification.

Figure 4.17: A curve with a symmetric ROI is placed on the surface and pulled first
upwards then towards the right.

Figure 4.18: A patch on the surface, defined by a boundary curve, is raised using a
curve handle. The handle is pulled in an arc towards the right side of the window.

54

The speed function for this operator is

F (x) =


(1.0− dcs

in(x)/r)α dcs
in(x) ≤ r

0 dcs
in(x) > r,

(4.8)

where r is the width of the ROI and dcs
in(x) is the geodesic distance between x and

the curve Cs. Points near the curve move the fastest and the speed decreases to zero

at distance r from the curve. The evolution stops once the user releases the curve. α

can be used to further control the shape as explained in the previous operators.

4.3.4 Pulling a curve on the surface, arbitrary ROI

The user first draws a closed curve (Cb) on the surface to define an ROI and

another curve (Cs) on the surface to be used as a handle. Clicking and dragging a

point on the curve moves the handle, and deforms the surface within the ROI. Figure

4.18 shows a sequence where the user drags the handle in an arc towards the right

side of the window.

The speed function for this operator is

F (x) = f(dout(x)) ∗
(

max(dcs
in(x))− dcs

in(x)

max(dcs
in(x))

)α

, (4.9)

where dcs
in(x) is the geodesic distance to curve Cs and dout(x) is the geodesic distance

to the boundary curve Cb from x. max(dcs
in(x)) is the maximum over all points in the

ROI. f(dout(x)) is defined in Equation 4.7 and ensures that the speed function goes

smoothly to zero at the boundary curve. The points closest to the handle move the

fastest, and the points on or outside of the boundary curve do not move. The speed

decreases as the distance to the handle curve increases, and goes to zero at curve Cb.

The evolution stops once the user releases the curve. α can be used to further control

55

(a) (b) (c) (d)

Figure 4.19: An example of the surface detailing tool. The two images on the left
consist of offsets on the surface created by continuous cursor strokes (a, b). The two
images on the right demonstrate interactive carving of the Chinese character for sky
(c, d).

the shape as explained in the previous operators.

4.3.5 Surface Detailing/Carving

With this operator the user picks a superellipsoid-shaped tool and moves it over

the surface to add or subtract features. The surface is locally modified in the general

shape of the chosen tool. The size of the tool can be changed interactively and the

height/depth of the features depends on the speed of the strokes. The faster the

cursor is moved over the surface the lesser the detail that is added and vice versa.

This kind of operator is analogous to displacement maps in explicit surface modeling

paradigms. A spherical tool is used to create the example in Figure 4.19 a-b.

The speed function for this operator is

F (x) =


0 fse(V) > 0

β ∗ fse(V) fse(V) ≤ 0

(4.10)

V = x− xc

The tool is centered at the cursor point xc. fse(V) takes in the relative position

56

(a) (b) (c) (d) (e)

Figure 4.20: Interactive carving as an erasing tool. Frames (a-d) demonstrate the
spout being erased and the last frame (e) shows the final result.

of x with respect to xc and evaluates the superellipsoid implicit inside-outside func-

tion [Barr, 1981]. fse is negative inside the superellipsoid, therefore setting β = −1

drives the surface outwards until it reaches the superellipsoid’s boundary where

fse = 0. Changing the superellipsoid’s shape parameters (ε1 and ε2) will also change

the shape of the surface detail.

Interactive carving is implemented in the same manner, only with β = 1. The

user clicks and moves the cursor over the surface, pushing the surface in. This can be

interpreted as carving out material. The speed of the strokes determines the depth of

the carving. A fast movement creates a shallow mark on the surface while constant

slow strokes create deeper indentations. Figure 4.19c-d shows a sample carving using

the spherical tool.

We have also utilized the carving operator as an interactive eraser tool to remove

some parts of a model. A feature can easily be removed by adjusting the size of the

tool and moving it over the unwanted portion of the model. Figure 4.20 demonstrates

the use of this operator to remove the spout from the teapot model.

4.3.6 Interactive Smoothing

We found it useful to add an interactive smoothing tool in our editing system. This

tool is a flexible and interactive version of the local smoothing operator described in

57

(a) (b) (c) (d)

Figure 4.21: Interactive smoothing on the spout of the teapot model. (a) The initial
scan converted model. (b) Smoothing tool is placed over rough region. (c) Smoothing
has been locally applied. (d) Smoothing completed around the area where the spout
meets the teapot.

Museth et al. [2002]. The user clicks on the surface and moves the cursor over the area

that needs smoothing. A curvature-based speed function then modifies the surface

following the user’s strokes. The smoothing speed function is described in Equation

4.11. The operator works within a fixed radius of influence. The size of the tool and

the amount of smoothing to be applied can be adjusted by the user.

The smoothing speed function is

F (x) = γ ∗ g(dg(x)) ∗ κ(x) (4.11)

g(d) =


1.0 d ≤ (r − ε)

0.5 + 0.5 ∗ cos(π∗(d−r+ε)
ε

) (r − ε) < d ≤ r

0.0 d > r,

(4.12)

where γ is a constant that controls the amount of smoothing, dg(x) = |xc − x| is the

58

distance from the point x to the cursor xc, κ is mean curvature, r is the radius of

the smoothing tool, and ε defines a transition region near the edge of the ROI. g(d)

is a function that ensures that the amount of curvature-based smoothing drops off

smoothly to zero at the boundary of the smoothing tool at a user-specified distance

r. Figure 4.21 demonstrates the use of smoothing on the spout of the teapot model

with γ = 0.3.

Table 4.1 shows a summary of editing operators explained so far.

4.4 Sketch-based Editing Operators

Several sketch-based techniques have been developed to edit level set surfaces.

The editing operations can be applied locally to a user-defined region or globally to

the entire surface. A single closed curve on the surface can be used to identify a

specific region of interest/influence (ROI) to be deformed. The user then draws one

or more curves on or over the surface to define the outlines of the final model. The

surface within the ROI moves towards these curves with the speed functions described

below. The curves may then be modified to further shape the surface.

4.4.1 Sketching a Single Cross section

With this operator a curve may be used to define a cross section of a local shape

change. The user draws a closed boundary curve (B) on the surface to define an ROI

and another curve (Cd) that defines a cross section of the desired shape. Every point

within the ROI moves in the general direction of Cd with a speed function defined in

Equation 4.13 until the surface reaches Cd. We created a “mountain” on the surface

with Cd defining the peak and B defining the extent of the foothills (Figure 4.23).

Once the evolution starts, a third curve (Cs) is created on the surface. This curve

is represented as a dense set of points and is the projection of Cd onto the surface.

59

Operator Speed Function Result

Pulling a point,
symmetric ROI

F (x) =

{
cosα(π/2 ∗ ds(x)/r) ds(x) ≤ r

0 ds(x) > r
x: point on the surface being evaluated

ds(x): geodesic distance from the point x to the point be-

ing dragged

α: user defined parameter that can be used to further con-

trol the shape

Helping plane

Pulling a point,
arbitrary ROI

F (x) = f(dout(x)) ∗
(

max(dxs
in (x))−dxs

in (x)
max(dxs

in (x))

)α

f(d) =

(
1/2− 1/2 ∗ cos(π ∗ d(x)/ε) d ≤ ε

1.0 d > ε

dxs
in (x): geodesic distance to xs from x

dout(x): geodesic distance to the boundary curve from x

ε defines a transition region near the edge of the ROI.

Pulling a curve
on the surface,
symmetric ROI

F (x) =

{
(1.0− dcs

in (x)/r)α
dcs
in (x) ≤ r

0 dcs
in (x) > r

r: width of the ROI

dcs
in (x): geodesic distance between x and the curve Cs

α is defined above

Pulling a curve
on the surface,
arbitrary ROI

F (x) = f(dout(x)) ∗
(

max(dcs
in (x))−dcs

in (x)
max(dcs

in (x))

)α

dcs
in (x), dout(x), f() and α are defined above

Surface
Detailing/Carving

F (x) =

{
0 fse(V) > 0
β ∗ fse(V) fse(V) ≤ 0

The tool is centered at the cursor point xc

|V | = |x− xc|
fse(V) evaluates the superellipsoid inside-outside function

around the cursor location.

β = −1 surface detailing, β = +1 carving

Interactive
Smoothing

F (x) = γ ∗ g(dg(x)) ∗ κ(x)

g(d) =

8><>:
1.0 d ≤ r − ε

1/2 + 1/2 ∗ cos(π ∗ (d− r + ε)/ε) r − ε < d ≤ r

0.0 d > r
γ: constant that controls the amount of smoothing

dg(x): Euclidean distance from the point x to the cursor

xc

κ: mean curvature. r: radius of the smoothing tool

ε is defined above

Table 4.1: A summary of the freeform editing operators

60

Cd

Cs

L

End point
on Cd

End point
on L and Cs Level-set surface

Shortest distance
from end point on
Cd to level-set
surface

Figure 4.22: Projecting the cross section curve onto the level set surface. The line L
in 3D space is created using the closest points to the end points of Cd on the surface.
Points starting from L move towards Cd and stop once they reach the surface, creating
the projected curve Cs.

The projection curve is created in two steps. First, the closest points on the surface

to both end points of Cd are found. A 3D line segment L is created using these two

closest points. L and Cd are both represented with the same number of dense points

and a one-to-one correspondence is defined between each pair of points on the curves.

Next, all points on L move to the level set surface either towards or away from their

corresponding points depending on their position with respect to the surface and Cd.

The points stop when they reach the surface creating a projection curve Cs of the

cross section curve Cd on the surface. Figure 4.22 shows Cd, Cs and L around the

level set surface. At every step of the evolution, Cs moves toward Cd and the surface

grows to meet the new Cs, until Cs (and the surface) reaches Cd.

The red dots on the cross section curve in Figure 4.23 are control points that can

be manipulated by clicking and dragging. New control points can also be added to

the curve. After a control point is moved or added, the curve is recalculated and the

level set equation is solved once more to fit to the new cross section. An initial bump

defined by two sketched curves is shown in Figure 4.23 (top). A control point on

61

B

Cd

Figure 4.23: Top: Two curves are sketched, one on and one above the surface. The
surface grows to fit to both cross sections. The final result is displayed with a surface
drawn translucently on the right. Bottom: A control point is modified (left). The
surface grows to fit to the modified curve (right).

the upper curve is pulled upwards. Figure 4.23 (bottom-right) presents the resulting

cross section curve and the surface that evolves to fit to the curve.

The speed function for this operator is

F (x) =
dup(x)

max(dup(x))
∗ f(dout(x)) ∗ max(din(x))− din(x)

max(din(x))
, (4.13)

f(d) =


1.0 d > ε

(d/ε)2 d ≤ ε,

(4.14)

where x is a point on the surface, dout(x) is the geodesic distance from x to B, and

din(x) is the geodesic distance from x to Cs. The first step of calculating dup for point

x involves finding the closest point in the point set representing Cs from x, called

xcs. Recall that xcs has a corresponding point on Cd, called xcd. dup(x) is simply the

Euclidean distance between xcs and xcd. Both max functions are taken over all points

62

(a) (b) (c)

(d) (e) (f)

Figure 4.24: (a-b) Two curves define the new shape of the nose. (c-d) The surface fits
to these curves. (e) The cross section curve is modified for further refinement of the
final shape. (f) The final result. (Some curvature-based smoothing is applied later
on to produce the final shape of the nose in Figure 4.36). A point representation of
the surface is used in (c) and (e) to provide a clearer view of the curves and control
points. α = 2.0.

63

(a) (b)

B

Cd

(c) (d) (e) (f)

Figure 4.25: One cross section curve is used to create a mohawk for the mannequin
head. (a-b) The initial and the final model. (c-d): Two curves define the shape of the
mohawk. The surface fits to these curves. (e-f): The cross section curve is modified to
further refine the final shape. The surface is drawn translucently in (c,e,f) to provide
a clearer view of the curves and control points.

in the ROI. f() is defined in Equation 4.14, and ensures that the speed function (and

therefore the deformation) goes to zero within a distance ε to boundary curve B.

The first term of Equation 4.13 ensures that the evolution will stop once the

surface reaches the Cd curve. Together the last two terms define the speed function

as a decreasing function of geodesic distance from the cross section curve Cd to the

boundary curve B.

The edits on the nose of the mannequin head in Figure 4.24 and the mohawk in

Figure 4.25 are created using this operator.

4.4.2 Multiple Cross Section Curves

The operator from the previous section was extended to create editing capabilities

that use several curves to define a 3D shape. Given a set of cross sectional curves,

64

we developed two approaches to create a surface that conforms to the shape of these

curves. These two techniques were implemented for editing a level set surface by

sketching multiple curves with a conventional 2D mouse, and are described in Sections

4.4.3 and 4.4.4. In both approaches the user first draws a closed curve on the surface

to define an ROI. Multiple cross section curves are then sketched to define the 3D

shape. Once the initial curves are placed the user then can modify them to specify

further details. The surface is drawn in translucent colors in this mode to facilitate

curve editing. Once curve sketching is completed, the system may be placed in surface

evolution mode. In this mode the surface evolves within the ROI after each curve

modification. This mode may also be toggled off to once again allow multiple edits

of the curves before the surface is updated.

4.4.3 Sketching over the surface

This method allows the user to edit and deform a level set model by sketching

planar curves over the surface. We have explored several methods that will fit a surface

to a given set of curves in 3D space and have found two reasonable approaches. In

the first approach, the surface grows locally until it reaches one of the curves, and

then stops at the first curve. The second approach involves blending the influence of

each cross section curve at each point within the ROI. Both methods utilize the speed

function defined in Equation 4.13 and require the calculation of dup and din relative

to each cross section curve at every point in the ROI.

In the first approach the speed function at point x on the surface is calculated with

Equation 4.13 using the closest curve, where “closest” is defined to be the one with

the lowest associated din value. The shape in Figure 4.26 (top right) is produced with

this method. The second approach uses a blending function to calculate the speed

of a point on the surface by combining contributions from multiple individual speed

65

(a) The input curves (b) Fitting the surface to the closest
curve

(c) Blending with α1
c (d) Blending with α2

c

(e) Blending with α3
c (f) Blending with α4

c

Figure 4.26: Sketching cross section curves over the surface.

functions. In general this approach drives the surface to a location between non-

intersecting cross section curves. We found this approach to produce more pleasing

results and it has been used for the remaining examples. Equation 4.15 describes the

general structure of the speed function for multiple curves.

F (x) =
Nc∑
c=1

αc(x) ∗ Fc(x), (4.15)

where Nc is the number of cross section curves, αc(x) is one of the four blending

66

functions in Equation 4.16, and Fc(x) is defined by Equation 4.13. For both terms

the subscript c indicates that the calculation is done relative to cross section curve c.

α1
c(x) = 1

2
+ 1

2
∗ cos(din(x)

max(din(x))
π)

α2
c(x) = 1− din(x)

max(din(x))

α3
c(x) = 1

Nc

α4
c(x) = 1

din(x)

(4.16)

where din(x) is the shortest distance between point x and the Cs curve associated

with cross section curve c, and max(din(x)) is computed over all cross section curves.

Figure 4.26 shows how the surface deforms given the input curves in the top left

and the different blending functions defined in Equation 4.16. Although all blending

functions generate reasonable results, α1
c generates the closest fit to all cross section

curves while producing smooth transitions on the surface in between curves. α2
c also

produces a close fit to the curves but the transitions between curves are not as smooth

as those produced with α1
c . α3

c is unable to fit to some of the curves closer to the

surface and α4
c produces a rather sharp drop-off from the cross section curves. We

use α1
c for the results shown in Section 4.7.

4.4.4 Sketching on the Surface

We have also developed a third approach for modifying a 3D surface from a set

of sketched curves by giving the user control over curve-curve intersections. This

method requires all cross section curves to be drawn on the surface initially. A 3D

line intersection algorithm is then used to calculate intersection points between two

curves. Short line segments connecting two consecutive points on each curve are

tested against each other for intersections. A bounding box optimization technique is

utilized to improve running time. Approximate 3D intersection points are calculated

67

(a) Initial layout (b) Moving one control point (c) Final layout

(d) Surface evolving to fit the
cross section curves

(e) Final shape (f) Final shape, surface drawn
translucently to better see the
curves

Figure 4.27: Sketching cross section curves on the surface.

using a closest point algorithm. Once the intersection points are calculated the two

curves are bound together, and the two curves stay attached to each other at these

intersection points during curve editing operations.

Once all curves are drawn and all the intersection points are calculated, the user

can modify the curves by pulling on the control points. Any of the cross section

curves can be selected by switching between curves using the arrow keys. Once a

control point on a curve is moved, the curve is modified using techniques described

in Section 4.2. When a single curve is edited the change is propagated to intersecting

curves via intersection points. When an intersection point on one curve is moved to a

new location, the movement is interpreted as an editing operation performed on the

connected neighboring curves at the shared intersection points. Once curve sketching

is complete, the system may be placed in surface evolution mode, and the surface

moves within the ROI to fit to the cross section curves using the speed function in

68

(a) (b) (c)

(d) (e)

Figure 4.28: Global editing example. The sphere is modified with 4 curves to create
a shamrock. An intermediate step during evolution is shown in top middle frame and
the final result is drawn translucently in top right. The model is further modified to
add a stem in bottom right with a point-based editing operator.

Equations 4.15 and 4.16. Figure 4.27 presents a surface editing session using this

approach.

4.4.5 Global Deformations

All editing operators described so far are local, i.e. they are applied only in a

user-defined portion of the surface. These operators can be extended to act globally.

In this mode, the operators are applied to the entire surface. The general shapes

of a number of models have been specified with this operator, e.g. the petals of the

shamrock in Figure 4.28, and the initial definition of the shark and duck in Figures

4.40 and 4.39. The speed function for this operator is also defined in Equations 4.13,

4.15 and 4.16. Note that the function f() (Equation 4.14) will always be 1 during

global editing, since there is no ROI boundary.

69

4.5 Voxels inside an ROI

The voxels within the ROI are calculated using a sweeping algorithm (Algorithm

1). For symmetric operators, like pulling on a point with symmetric ROI, the al-

gorithm first adds the point on the surface that the user clicked (xs) to the list of

voxels within the ROI. All immediate “surface-crossing” neighboring voxels of xs are

added to the list representing the ROI along with their Euclidean distances to xs. A

“surface-crossing” voxel is one that has the level set between it and one of its immedi-

ate neighbors on the grid. This is easily identified via a sign flip between the φ values

of the voxel and its neighboring voxels. Next, all immediate neighbors of these newly

added voxels, which are also “surface-crossing”, are added to the ROI list. Their dis-

tance to xs is calculated by adding the distance of the intermediate voxel in the list

and the Euclidean distance between the new voxel and the intermediate voxel. We

make sure that this distance is updated in case a shorter route is discovered further

along in the computations. If the operator uses a curve on the surface instead of a

point, the algorithm uses the sample points on this curve as initial points. The same

sweeping algorithm is used with multiple xs as initial points. All possible paths to

the curve are considered, and the shortest path to the curve is used to calculate the

geodesic distances.

For those operators that employ a user-drawn boundary curve to define an arbi-

trary ROI, the algorithm first marks all the surface-crossing voxels adjacent to the

boundary curve and inside the ROI. Sweeping out from the initial ROI voxels adds

all encountered surface-crossing voxels to the ROI voxel list unless marked by the

boundary curve. Starting at the handle (point or points on the handle curve), the al-

gorithm visits all surface-crossing voxels enclosed by the boundary curve in a radially

symmetric fashion and creates a list of voxels along with their geodesic distances to

the handle. Similarly distance information may be swept in from the boundary curve

70

Algorithm 1 SweepGeodesic (xs, LIST, DIST) : This algorithm computes a list
of voxels within a ROI along with their geodesic distances to a point xs.

{LIST is the list of voxels within the ROI.}
{DIST keeps the geodesic distances between the voxels within the ROI and xs.}

for all voxels V in 1-Neighborhood of xs do
add V to LIST
add ‖V − xs‖ to DIST

end for

start = LIST.begin(), end=LIST.end()
for all voxels V in LIST [start : end] do

for all voxels VN in 1-Neighborhood of V do
if VN is a surface crossing voxel within ROI then

if VN is NOT in LIST then
add VN to LIST
add DIST [V] + ‖V − VN‖ to DIST

else
if DIST [V] + ‖V − VN‖ < DIST [VN] then

DIST [VN] = DIST [V] + ‖V − VN‖
end if

end if
end if

end for
start = end, end=LIST.end()

end for

71

(a) (b) (c) (d)

Figure 4.29: Pulling on a point, symmetric ROI with a 15 voxel radius. (a-b) The
ROI is calculated by checking every voxel within a 153 bounding box centered at xs

(shown in blue in (a) and (d)). All voxels with a Euclidean distance of 15 or less to
xs are added to the ROI. (c-d) The ROI is calculated using the sweeping algorithm
(Algorithm 1). The pink points in (a) and (d) represent the voxels in the ROI for
each case. Using geodesic instead of Euclidean distance ensures that only the selected
portions of the model are modified.

voxels to all the surface voxels inside the ROI to calculate distances to the boundary

curve.

Geodesic distance fields for non-convex shapes might have C1 discontinuities at

points equidistant to multiple points on the boundary or anchor curves. Schmidt and

Wyvill [2005] address this issue and suggest techniques to fit smoothed approximate

distance fields to these surfaces. Non-smooth distance fields used by the speed func-

tions may result in discontinuities in the resulting surface. We apply curvature-based

smoothing locally within the ROI at regular intervals to overcome these artifacts.

When an editing operator is based on purely spatial Euclidean relationships, un-

wanted surface movements may be produced on nearby but unselected portions of

the model, as seen in Figure 4.29a and 4.29b. Here, since the ROI is based on Eu-

clidean distance, the bottom surface bulges out toward the protrusion being created

72

Figure 4.30: Level set surface-editing framework. User input is translated into level
set speed functions. The level set PDE is solved on a portion of the narrow-band by
the VISPACK library, and the resulting edited model is displayed in the UI.

by pulling the blue point, an unwanted modification that will eventually produce a

topology change not specified by the user input. Basing the operators on geodesic

distances allows us to properly localize the editing operation, as seen in Figure 4.29c

and 4.29d. The blue points represent xs and the pink points highlight the ROI in

Figure 4.29a and 4.29d.

4.6 Modeling System

The level set surface editing operators have been implemented in an interactive

level set modeling system. The system consists of four major components depicted in

Figure 4.30, (1) the level set library that solves the level set PDE on a narrow-band,

(2) the OpenGL user interface (UI), (3) the data structures that hold the volume

and the narrow-band information, and (4) the routines that translate user input into

speed functions for the level set PDE.

The first component of the framework utilizes the VISPACK level set library [Whitaker,

2008] to efficiently solve the level set PDE. We have developed an editing user in-

73

User Input Compute
ROI

Update
model in UI

Calculate speed
within ROI

Update voxels
within ROI

Create & Solve
PDE

Figure 4.31: The computational pipeline.

terface (UI) within an OpenGL application, as described in Section 4.6.3, which has

been integrated with the VISPACK library. The application accepts specific user

actions and translates them into speed functions for the level set equation. The ac-

tions include mouse clicks and strokes, as well as keyboard input, that are designed

to provide the user with an intuitive and straightforward way to interact with the

model and underlying library functions. We have also enhanced the narrow-band

technique1 in VISPACK to further improve its computational performance. Section

5.1 describes the additional data structures used to achieve real-time evaluation of

the level set equation in a subset of the narrow-band.

4.6.1 Computational Pipeline

The steps demonstrated in Figure 4.31 are processed every time a surface operator

is invoked by the user. An ROI is calculated based on a selected point or a curve

on the surface and either the size of the symmetrical tool or the arbitrary boundary

curve drawn by the user. Speed functions explained in Sections 4.3 and 4.4 are used

1Rather than track all the level sets, the narrow-band method focuses computation on those
voxels which are located in a narrow-band around the zero level set.

74

to calculate the change of φ values at all voxels within this ROI. In the next step,

the scalar (φ) values at these voxels are updated. This update implicitly moves the

level set based on the speed function. In the final step the new implicit surface is

extracted from the updated scalar field (either as points or polygons) and displayed

on the screen.

4.6.2 Numerical Techniques

The speed functions described in Sections 4.3 and 4.4 create hyperbolic PDEs that

require upwind differencing schemes for calculating spatial derivatives. VISPACK im-

plements first and second order accurate upwind schemes, while third or fifth order

schemes like ENO and WENO [Osher and Fedkiw, 2002] can be used to achieve more

accurate solutions. Calculating the higher order numerical schemes impacts interac-

tivity, presenting a tradeoff between time and accuracy. Curvature-based smoothing

explained in Section 4.3.6 creates a parabolic PDE. Second order accurate central

differences can be used for this kind of PDE, as well as higher order upwind methods.

Time integration is achieved using second order Eulerian techniques. There also exist

third and fifth order TVD-Runge Kutta methods for time integration. These higher

order finite difference methods are explained in more detail in Osher and Fedkiw

[2002].

VISPACK employs the sparse-field algorithm [Whitaker, 1998] that uses an ap-

proximation to the distance transform. This algorithm makes it feasible to recompute

the neighborhood of the level set model at each time step without the need to stop

the evolution and re-normalize the distance field. The distance field is re-normalized

on the fly as the voxel values are updated during the level set evolution.

75

4.6.3 The User Interface

The interface supports two interaction modes. The first one is the view mode. In

this mode, the user is able to change the view of the object by applying rotate, zoom

and pan via mouse input. The user may choose one of the surface editing operators

while in the edit mode. The user interactions for these operators include drawing

curves on/over the surface and/or clicking on and dragging points on the surface. A

user draws a curve by clicking and moving the cursor over the surface. The cursor

positions are tracked and define a list of control points. An enhanced Catmull-Rom

spline as described in Section 4.2 is fit to these control points once the mouse button

is released. The user can switch between view and edit modes using a single key

stroke.

The level set model may be displayed either with point or polygon rendering. The

VISPACK library can return a set of points lying on the level set surface. These

are displayed using OpenGL’s point rendering capability. The surface may also be

displayed as a set of polygons, which can be extracted from the level set volume

using a polygon extraction algorithm [Wyvill et al., 1986b, Lorensen and Cline, 1987,

Bloomenthal, 1994]. Point rendering is much faster and allows more interactive editing

feedback, while polygon rendering gives a higher quality result and can be utilized

to export mesh models. We have found it useful to be able to switch between the

two types of viewing, allowing the user to choose either responsiveness or quality

when rendering. Normally, point rendering is used to maximize interactivity during

a modeling session. The user may then switch to polygon rendering to produce a

higher quality model in order to more closely evaluate the session’s results.

We have also incorporated an interactive painting tool into our modeling frame-

work. A paint brush with an adjustable size can be moved over the surface to apply

different colors. Only the surface voxels within the tool’s extent are painted. The

76

user can pick any of the pre-defined colors. Every color has an ID number and the

color ID for every voxel is stored in the 3D grid. A tri-linear interpolation is used

to determine the color of the actual surface points while displaying the model. Some

examples can be seen in our final results in Figures 4.32, 4.33, 4.34, 6.7, 4.36 and

4.37.

4.7 Results

We created several examples to demonstrate the modeling capabilities of our edit-

ing operators. This section shows models created using the freeform and sketch-based

editing operators described in this chapter.

Figure 4.32 is a lake with plants, rocks, a floating log and an imaginary animal (a

cross between a frog and a hippo). The initial model is a 140× 140× 20 box within a

161× 161× 101 volume. The model is created on one side of the box using a mixture

of editing operators listed in Table 4.2. Surface detailing was used to create the log,

pulling a point was utilized for the plants and rocks. The animal’s body was defined

with the sketched cross section and its eyes were created by pulling on a curve with

a symmetric ROI.

Figure 4.33 also uses the box model to create the body of the octopus. In this

case we doubled the resolution of the box to 322 × 322 × 202. The general shape of

the head was defined with a cross section curve. The nose and arms were drawn out

from the body with a point-based operator, and the eyes and the mouth were carved

into the head.

We erased the spout and top handle of the teapot model and added new decorative

handles with the point-pulling operator to create the model in Figure 4.34. The

dimensions of the teapot model is 156× 232× 124.

In the next example we edited a 200 × 250 × 200 superellipsoid within a 401 ×

77

Figure 4.32: Lake with unusual inhabitants. The model is created on one side of a
box using several of the level set editing operators.

Figure 4.33: Cartoon octopus. The body of the octopus is created on one side of a
box using the sketch-based editing operator. The head and the arms are grown from
the body by pulling on points using a symmetrical ROI and the eyes are carved into
the head.

78

Figure 4.34: The teapot model is modified to create a decorative two-handle teapot.
The spout and top handle are erased and new handles are added. Edits are made
to one side of the model and a volumetric reflection operator is used to create the
symmetric result.

Figure 4.35: Cartoon frog. A superellipsoid is used as the initial head model. The
eyes are added by pulling the surface up and the mouth is modeled using interactive
carving.

79

Figure 4.36: A fantasy character is created by adding horns and pointy ears to the
mannequin model. The chin, eyes and nose are also modified and hair detail is added.

(a) (b) (c) (d) (e)

Figure 4.37: A cartoon bear is created using level set surface editing operators. (a)
The initial body is modeled with the union of two superellipsoids. (b-c) The bear
is created using a collection of operators, e.g. surface detailing, carving, pulling on a
point with symmetric ROI. (d-e) The painted final model is shown from two different
angles.

80

(a)

(b) (c)

(d) (e) (f)

Figure 4.38: Topological repair of a vasculature data set. (a and f) The original model.
(b-c) The volume is manipulated using interactive carving to separate two vessels that
were merged due to errors in 3D scanning. (d-e) The volume is manipulated to recover
lost data by connecting a vessel that was separated.

401×401 volume. The eyes of the Kermit-like figure are added by pulling the surface

up and the mouth is modeled using interactive carving (See Figure 6.7).

Figure 4.36 shows a fantasy character created from the mannequin head. The

hair, horns and eyebrows are added using surface detailing and point-pulling, and the

eyes, ears, nose and chin are modified with surface detailing, curve cross sections and

curve-pulling. The resolution of this model is 360× 435× 510.

The body of the cartoon bear in Figures 4.3(a) and 4.37 is initially defined as

the union of two superellipsoids in a 320× 320× 600 volume. The legs and the nose

are pulled out from the body symmetrically and the eyes are carved in. The general

shape of the arms is created with surface detailing with a large tool. The arms, claws

and the coat detail are added via surface detailing with a smaller tool.

We applied our editing operators to a dataset obtained from a vasculature MRI

81

scan (Figure 4.38). This dataset contains topological errors inherent to 3D scanning

and reconstruction. Interactive carving is used to separate two blood vessels that

were incorrectly merged. A blood vessel was interactively connected where it was

incorrectly split during reconstruction by pulling on one end of the vessel and merging

it with the other end. The dimension of the model is 621× 371× 346.

Figures 4.23, 4.26 and 4.27 begin with a box model with resolution 161 × 161 ×

101. Figure 4.25 uses the scan-converted mannequin head model at resolution 134×

160 × 186. Figures 4.40, 4.28 and 4.39 all start with a 20 × 20 × 20 sphere within a

150× 150× 150 resolution volume. The final resolution of the bounding box around

each model is given in Table 4.2.

We created three “plastic toys” using the sketch-based modeling system. The

shark model in Figure 4.39 is created using eight curves and a combination of local

and global editing operators. The initial body is created from the sphere using a

single cross section curve and the global editing operator. Three additional curves

further define the head and the tail and create a slightly curved body. Three fins

are added similarly by using a closed curve to define a ROI and a cross section curve

for the fin shape. A painting capability allows color to be placed on the model. The

painted and shaded final model can be seen from different views in Figure 4.39.

The duck (Figure 4.40) and the shamrock (Figure 4.28) models are similarly cre-

ated using sketched curves and the level set sphere model. An outline curve for the

duck is sketched and the sphere deforms to fit this curve. In order to create the wing

the user draws one closed curve on the surface that identifies where the wing is going

to be placed and another curve over the surface to define a cross section of the wing.

Details like the eyes on the duck and the stem of the shamrock are created using

point-based freeform editing operators.

82

Figure 4.39: A sphere and a cross section curve is used to create the initial shark
body. The tail and head are modified using additional curves. The fins are added by
locally editing the shark body. The final painted model is shown from three different
views.

Figure 4.40: A duck is created from a sphere and a cross section curve. A wing is
defined with a sketch-based editing operation.

83

4.8 Discussion

We have used the following techniques to measure the accuracy and effectiveness

of our operators in comparison with the state-of-the-art surface manipulation frame-

works. Table 4.2 summarizes all of the editing operators used to create these results

along with the running times in frames per second (fps) on an Apple MacPro desktop

computer with dual Intel quad-core 3.2GHz CPUs and 14 GB of memory running

Mac OS X 10.5. Even though the modeling application is not multi-threaded and is

only running on one core, running times demonstrate interactive rates for a variety

of volume resolutions.

The time needed to evaluate the speed functions is linear with the number of voxels

within the ROI. This number is directly related to the ROI’s radius, which is measured

in voxels, for an operator with a symmetric ROI. In other words, changing the model’s

resolution does not change the running time of a certain operator for a given ROI.

However, if one doubles each dimension of a model’s volumetric representation, the

radius of the ROI would also need to double in order to cover the same region on the

model, thus increasing the number of voxels in the ROI (and the associated running

time) by a factor of 4.

Since the computation of our editing operators is completely localized to the ROI,

the time needed to compute them is not necessarily tied directly to the resolution

of the model. Section 5.2 describes how additional data structures give the system

the ability to limit computation to the subset of the level set surface that is actually

being modified and increase performance. A good example of this can be observed in

Figures 4.32 and 4.36. As stated in Table 4.2, the operator used to create the plants

and rocks on the lake is the same one used to create the horns on the mannequin

head. The second model is approximately 10 times larger in surface area than the

first. However, both editing operations run around 200 fps, since the area of the ROI

84

Editing Details Speed (fps)
Lake model, Dimensions: 161× 161× 101

Plants and rocks Pulling on a point, symmetric ROI 200
Surface on the rightmost plant Surface detailing 100-150

Log Surface Detailing 20
Animal (body) Sketch-based editing 12
Animal (eyes) Pulling on a curve, symmetric ROI 34

Animal (eyeballs) Surface Detailing 125
Octopus, Dimensions: 322× 322× 202

Body and arms Pulling on a point, symmetric ROI
20 (body)
200 (arms)

Head Sketch-based editing 25
Eyes Interactive carving 50
Nose Surface detailing 100

Teapot, Dimensions: 156× 232× 124
Erasing spout and top handle Interactive carving 25

New handles Pulling on a point, symmetric ROI 100
Cartoon frog, Dimensions: 401× 401× 401

Mouth Interactive Carving 10
Tongue Surface detailing 50

Eyes (balls) Pulling on a point, symmetric ROI 20
Eyes (crosses) Surface detailing 50

Mannequin Head, Dimensions: 360× 435× 510
Hair, eyes and eyebrows Surface Detailing 100-200

Horns Pulling on a point, symmetric ROI 100-200
Nose and ears Sketch-based editing 40

Chin Pulling on a curve, symmetric ROI 100
Cartoon bear, Dimensions: 320× 320× 600

Arms, claws and coat Surface detailing 50-150
Legs, ears and nose Pulling on a point, symmetric ROI 50-75

Eyes Interactive carving 50
Aneurysm, Dimensions: 621× 371× 346

Splitting veins Interactive carving 100
Connecting veins Pulling on a point, symmetric ROI 100

Shamrock, Dimensions: 45× 50× 35
General shape Sketch-based editing (global) 83

Stem Pulling on a point, symmetric ROI 200
Rubber duck, Dimensions: 79× 67× 37

General shape Sketch-based editing (global) 66
Wings Sketch-based editing 90
Beak Pulling on a point, symmetric ROI 200

Toy shark, Dimensions: 85× 99× 54
General shape Sketch-based editing (global) 66

Fins Sketch-based editing 90

Table 4.2: Editing details and running times for the final results. Speed is in frames-
per-second (fps).

85

Volume Resolution
(voxels)

Sphere Radius
(voxels)

ROI Radius
(voxels)

Speed
(fps)

643 20 5 333
1283 40 10 100
2563 80 20 12.5
5123 160 40 5
5123 160 10 100

Table 4.3: Running times of a single operation at different resolutions. The number of
voxels within the ROI increases four times every time the radius of the ROI doubles.
Running times are given in frames-per-second (fps).

used to create the horns is approximately equal to the area of the ROI used to create

the plants on the lake.

Results of another run time experiment are presented in Table 4.3. The table

contains running times in frames-per-second for editing a sphere model with a given

radius and the same operator, i.e. pulling a point with a symmetric ROI. The resolu-

tion of the underlying volumetric model was successively doubled in each dimension;

thus increasing the total number of voxels by a factor of 8 for each expansion. For

each model the ROI was also extended (by doubling its radius) to ensure that the

same region of the sphere was modified for each experiment. The number of voxels

within the ROI increases by a factor of 4 every time the ROI radius doubles. The

comparison of running times as the resolution increases shows that the run times are

linear with the number of voxels processed for that operation. The average increase

in run time is approximately a factor of 4. A comparison of the last two rows of Table

4.3 also shows that the run times are independent from the volume resolution or the

surface area of the model.

A major limitation of level set model editing is the memory required to store the

underlying volumetric representation. While narrow-band schemes effectively address

86

the problem of time complexity in the original level set formulation, they explicitly

store a full Cartesian grid and use additional data structures to identify the narrow-

band grid voxels. The initial examples presented here have been created with low-

resolution volume datasets, which limit the size of the feature that can be specified on

the surface. Chapter 5 explains how we overcame this limitation by utilizing sparse

volume datasets, as well as techniques for localized surface editing.

87

5. Representing High Resolution Level Set Models for Interactive Editing

and Rendering

In Chapter 4, we described a set of level set surface editing operators and sketch-

based techniques that may be used to modify level set surfaces. For these techniques

to provide value to the user, they must operate in a framework that can effectively

process high resolution volumetric models. This chapter describes utilizing sparse

volume data structures in order to reduce the memory requirements of volumetric

implicit models, as well as localized editing techniques, i.e. processing only the vox-

els within the ROI during an edit, in order to reduce running times that facilitate

interactive editing of high resolution surfaces.

5.1 Efficient and Dynamic Data Structures for High Resolution Level Set

Models

A major limitation to editing a level set model is the memory required to store its

underlying volumetric representation. The space and time complexity of representing

and deforming a level set model have prevented these models from being utilized in

interactive modeling systems. An additional problem common to interactive systems

for editing large-scale models is rendering the surfaces at interactive rates. A current

state-of-the-art volumetric modeling system should support models containing at least

one billion voxels and provide 25-30 frames-per-second (fps) evaluation and rendering

rates at these resolutions. Even the most advanced data structures and algorithms

developed to date for level set models are not able to meet both of these requirements

simultaneously. This section describes a novel approach to storing a level set model

in a compact spatial hash table, as well as the utilization of k-d trees to optimize

88

Figure 5.1: A scan converted level set model of a horse (upper right) is edited to
add surface details.

rendering times. Our work closes the gap between level set methods and interactive

modeling applications by providing new techniques that allow these models to be

incorporated into current modeling systems. A level set model interactively created

with our new data structures is shown in Figure 5.1.

The resolution of the models shown in Section 4.7 is limited by the memory

required to store the volume dataset that represented the surface. For example, the

largest level set volume dataset that we were able to store and interactively manipulate

on a computer with 14GB of memory contained approximately 80 million voxels. This

represents a cubic volume dataset with approximate dimensions of 4303 voxels.

Higher spatial resolutions are needed in order to make detailed models with small,

fine structures. Creating a volumetric model where n approaches 2,000 (8 billion

89

voxels if stored in a 3-D array) would provide high resolution capabilities and would be

desirable for current volumetric modeling applications. A sparse data structure that

only stores the data associated with the voxels lying in the narrow-band is the key to

representing high resolution level set models. The challenge when creating volumetric

models of these sizes is to keep the model processing time interactive, i.e. providing

model and display updates at a rate of 25-30 frames-per-second (fps). While current

level set data structures can represent models at these high resolutions [Houston et al.,

2006, Nielsen and Museth, 2006, Nielsen et al., 2007], they do not support the rapid,

arbitrary access and update operations required for interactive editing applications.

To address this deficiency, this chapter presents data structures that enable interactive

editing of large-scale level set surface models. The new approach utilizes spatial

hashing to represent a narrow-band of voxels around the level set interface, as well

as a k-d tree to hold the model’s display points that lie on the surface itself. This

sparse representation of voxels and surface points lets us create and modify high

resolution level set models with modest memory requirements, while allowing fast

data access/modifications and interactive graphics updates (normally above 25 fps).

It also supports out-of-the-box editing, i.e. no bounding box limits the surface editing

region, a restriction common when utilizing 3-D arrays. As compared to previous

PDE-based modeling work, our system provides significantly faster processing speeds

on much larger volumetric models, even when considering the difference in processor

power.

5.1.1 Voxel Representation

For our level set editing system, we pack sparse data into a dense 1-D hash table

using a hash function H(P) for a set of data with 3-D coordinates P . The hash

values should be uniformly distributed in order to minimize collisions and to guarantee

90

adequate performance. Furthermore, the evaluation time for the hash function should

be compatible with the frame rates of the interactive application. To meet these

requirements, we use spatial hashing to store data associated with narrow-band voxels

in a 1-D hash table of size TS. The data includes the 3-D position of the voxel, distance

values, a gradient vector, a color index, a pointer into the narrow-band data structure,

and indices into the arrays storing display data. Hash values are computed for all

discrete vertex positions P using a hash function H(P).

We use the hash function described in Teschner et al. [2003]

H(P) = (Px × C1 ˆ Py × C2 ˆ Pz × C3) % TS,

where Px, Py, and Pz are 3-D coordinates, and C1, C2, and C3 are three constants,

ˆ is the bitwise exclusive or operator and % is the modulus operator. The three

constants, C1 = 73, 856, 093, C2 = 19, 349, 663, and C3 = 83, 492, 791, are large prime

numbers. We assume that the modulus operator always returns positive numbers,

i.e. −1 % 5 = 4. Teschner et al. [2003]’s analysis concludes that the function can be

evaluated very efficiently and produces a comparatively small number of collisions

with large hash tables.

For a level set model with O(n3) voxels, where n is the resolution in one dimension,

the number of voxels on the surface is O(n2). We need at least three neighboring

voxels on each side of the interface for the finite difference methods that calculate

surface normals and curvature. We set the size of the hash table to be 7∗n2, which is

approximately equal to the number of voxels inside the narrow-band. This drastically

reduces the space complexity for large n, i.e. n ∼ 210, while keeping the number

of entry collisions low. For non-square volumes, the hash table size is set, at the

beginning of an editing session, to 7 ∗ I ∗ J , where I and J are the two largest

dimensions of the bounding box around the model to be edited.

91

Figure 5.2: Left: Scan converted initial model with its bounding box. Right: Level
set editing operators create a new model that extends outside of the bounding box.

In addition to the benefits of low memory requirements and fast access/modification

times, spatial hash tables provide the extra advantage of implementing an unbounded

grid; thus enabling “out-of-the-box” computing. In the past storing level set values

in a 3-D array has constrained the model to lie within the bounds of the array. Sim-

ilar to the data structures of Houston et al. [2006] and Nielsen and Museth [2006],

spatial hash tables allow level set models to evolve outside of the bounds of their

initial model. Figure 5.2 presents the bounding box of a scan-converted model and

demonstrates how editing operators can create a new model that extends out of this

bounding box.

92

5.1.2 Display Representation

We employ OpenGL Vertex Buffer Objects (VBOs) to display the points lying on

the dynamic level set surface. Every time the surface changes the buffer holding the

point data is remapped and transfered to the GPU. This remapping process may slow

down an editing application if a large-scale model is displayed with one buffer, and the

entire buffer must be updated for small changes in the model occurring every frame.

Since our editing operators usually modify the surface locally we spatially divide

the surface amongst several VBOs. Only the VBOs associated with the modified

portion of the model are remapped during an editing operation. This distribution

of the surface over several VBOs and the selected updates of a subset of the VBOs

significantly improve display performance for small, localized surface modifications.

It is important to partition the surface evenly between the VBOs to optimize

update times. One can utilize binary space partitioning to accurately distribute

the vertices between VBOs. This method ordinarily requires that the data first be

sorted when building the partition, which requires O(N log N) time for N data points.

However, the surface is likely to change between each frame, thus requiring that the

data structure be completely recomputed in order to keep the data sorted and the

binary tree balanced. Therefore, it is more advantageous to use a simpler algorithm

with smaller time complexity that subdivides the set of vertices into approximately

equal segments. We have loosened the requirement of having a strictly balanced BSP

tree in order to minimize the amount of time spent subdividing and balancing the

tree that holds the display vertices. Therefore, we utilize a k-d tree and a separation

plane calculation that does not require sorting to produce an approximately balanced

tree. We employ a divide-and-conquer method that recursively finds the centroid of

the display vertices and subdivides the set into two parts around an axis-aligned plane

passing through the centroid. Finding the centroid is linear in both space and time

93

complexity.

Display vertices are added to and dropped from the surface as it changes from

application of the editing operators. Enhancements to the VISPACK library (see

Section 5.2) return the lists of voxels that are added to and removed from the narrow-

band. Once a vertex is added, the VBO that should display this vertex is located by

traversing the k-d tree and inserting the vertex into the vertex array associated with

the particular VBO. If a vertex is dropped because it is no longer on the surface, its

location in the VBO arrays can be retrieved from a hash table, and then removed

from the VBO’s vertex array. Only the VBOs associated with the modified nodes of

the tree are remapped at each frame.

The algorithm does not guarantee to evenly partition a set of points on a level set;

however, it is straightforward to calculate and does not require sorting of the vertices.

As demonstrated later in Section 5.4 (see Figure 5.8), it creates a fair partitioning

where each VBO will be assigned a set of vertices to display. Being a binary tree, it

also answers vertex location queries in O(L) time, where L is the level of subdivision,

providing a fast way to update the vertex data and identify which VBOs need to be

remapped at every frame.

We have found that having the unbalanced distribution of vertices in the VBOs

produced by our partitioning method does not significantly impact graphics perfor-

mance when editing and displaying our models. During editing, it is possible that the

imbalance of vertices can increase significantly and slow the interactive display when

updating and drawing the model. Given this situation, which occurs infrequently,

the partitioning algorithm should be run again to improve the distribution of vertices

within the VBOs. We have explored a number of methods for automatically triggering

the repartitioning of the display vertices, based on frame rates and on quantifying the

imbalance using the difference between or the ratio of the minimum and maximum

94

VBO sizes. If the difference or ratio changes significantly from the value calculated

at initialization then the VBO data structure can be recomputed. Since graphics

performance was normally not an issue when creating our models, we provide a man-

ual method for repartitioning display vertices via user input in our system interface,

which the user can execute if display times degrade during the editing session.

5.2 Local Surface Editing Techniques

VISPACK contains a sparse-field narrow-band implementation for efficiently solv-

ing the level set equation [Whitaker, 1998]. The technique localizes computation to

only those voxels that lie within a narrow-band of the level set surface. The narrow-

band data structure is implemented with a set of doubly linked lists, each storing a

single layer of voxels within a certain distance of the surface. The layer may either be

inside/outside of the surface or contain the surface itself. Each voxel is only stored

in the list associated with the layer within which it resides, and the order of voxels

within each list is arbitrary. While this implementation provides an efficient way to

store and update the narrow-band, it requires that the level set PDE be solved over

the whole surface. This is inefficient when an editing operation only affects a subset

of the voxels, which requires traversing only a small portion of the doubly linked lists.

Since most of our surface-editing operators are designed to produce local surface

modifications, it is advantageous to add another layer of data structures over the

existing one in VISPACK. These additional data structures give the system the ability

to limit computation to the subset of the level set surface that is actually being

modified. The new data structures are implemented as C++ vectors of pointers that

point to entries within the VISPACK linked lists. These pointer data structures create

an easy way to access a subset of voxels that are spatially contiguous. The elements

in the vectors are created using a flood fill algorithm when the user first clicks on

95

Surface
voxels

Outside
layer 1

Outside
layer 2

Outside
layer N

Inside
layer 1
Inside
layer 2

Inside
layer N

1 2 N

Outside layer

Surface
voxels

1 2 N

Inside layer

* *

*

*

* *

*

Narrow Band

Point (x,y,z)

float change

Figure 5.3: Three additional data structures (Surface voxels vector, Outside layer
vectors and Inside layer vectors) are added to the narrow-band VISPACK data struc-
ture. The new data structures support interactive update rates by identifying the
subset of voxels in the narrow-band needed to solve the level set PDE during an
editing operation.

a point of interest. All the voxels on the surface up to a certain distance from the

click point or within a Region-of-Influence (ROI) are added to these new vectors.

Entries in the new vectors are updated, added and/or deleted during surface editing

as voxels are added or removed from the original VISPACK narrow-band lists. An

additional spatial hash table of pointers provides constant-time access to any narrow-

band element. Each element in the hash table points to the corresponding element

in the VISPACK narrow-band list. These pointers are kept up-to-date with every

change to the narrow-band data structures.

Figure 5.3 shows the VISPACK narrow-band data structures within the dotted

green box, as well as the new data structures that further localize the level set compu-

96

tations. VISPACK keeps a linked list of all the voxels on the model’s surface, as well

as separate linked lists for the voxels that are 1 to N layers away from the surface,

both inside and outside. The elements of the linked lists store the 3D coordinates of

the center of a voxel and the floating point distance to the surface, as seen in the lower

right corner within a circle. We have added a collection of pointers to the original

VISPACK linked-list elements that point to the subset of voxels involved in a surface

editing operation. The pointers are kept in related vectors, e.g. vector Outside Layer

1 keeps pointers to voxels just outside the surface and Outside Layer N keeps pointers

to the voxels at the outer boundary of the narrow-band. Similar information is stored

for Inside Layer 1 through N. The Surface Voxels vector is a single list that keeps

pointers to the surface voxels. Since these layers do not necessarily have the same

number of voxels we utilized C++ vectors to represent each collection.

Note that there is no prescribed order or structure to the pointers to the VISPACK

list elements kept in each vector. The first pointer in the Surface Voxels vector may

point to the second element of the VISPACK Surface Voxels list. During editing

several updates to any of these lists may happen. As the surface grows outwards

some voxels are added to the Surface Voxels list, while some are dropped and possibly

added to Inner Layer 1. The shift happens in every layer, i.e. a voxel in the 2nd inner

layer could shift to the 3rd and so on. On the boundaries of the narrow-band some

voxels are dropped from Inner Layer N and some new voxels are added to Outer

Layer N. The pointers in the relevant vectors are kept up-to-date with every change

made to the original VISPACK lists, e.g. the pointer to the voxel that is dropped

from VISPACK Inner Layer N also is also removed from the associated vector. The

scenario is similar when adding a new voxel to any list.

Figure 5.4 presents a 2D example that demonstrates the changes in the narrow-

band linked lists as the surface evolves. The layers of the narrow-band are color

97

Inside Layer 2

Surface Voxels Outside Layer 3
Outside Layer 2
Outside Layer 1

Inside Layer 1

Figure 5.4: Changes in the narrow-band linked lists as the curve on the left evolves
into the curve on the right.

coded such that the red cells represent the surface voxels, blue cells represent inner

and green cells represent outer layers. A legend is also provided at the bottom of the

figure.

We also keep a spatial hash table of pointers at the same resolution as the volume

to gain constant time access to any element in the VISPACK linked lists. These

pointers point to the entries in the linked lists associated with the (i,j,k) locations

in the 3D grid. This hash table is used to initialize the pointer vectors mentioned

above when the user clicks on an arbitrary point on the surface. The size of the

vectors, i.e. Inside/Outside Layer 1 through N and the Surface Voxels, is directly

proportional with the size of the surface area that is being modified and is negligible

for the operators discussed in this paper in comparison with the overall memory usage.

For example, the combined size of these vectors is (2 ∗N + 1) ∗M , when editing M

voxels on the surface. N = 3 is the width of the narrow-band in our implementation.

These additional data structures produce a considerable speed-up when working

with high resolution volumes. We achieved approximately 10 times faster running

98

times using the additional pointer vector data structured compared to using just the

original VISPACK narrow-band data structures for a 1283 volume with an ROI that

has a 20 voxel radius with the editing operators from Section 4.3.1. The surface

embedded in this volume has approximately 1282 ∼ 16K voxels. There are approx-

imately πr2 = π202 ∼ 1.2K voxels within the 20 voxel wide symmetric ROI. Since

the running time is linear with the number of voxels processed, our data structures

provide more than 10 times speed up by restricting the computations to a small area

on the surface. Therefore, the extra memory usage allows us to create an interactive

modeling framework.

5.3 Results

We created three models to demonstrate the capabilities of our level set editing

system using sparse volume data structures. These models are significantly higher in

resolution compared to those shown in Section 4.7.

Figures 5.2 and 5.5 show a flower pot created from a simple initial model. The

pot was defined as a scan-converted superellipsoid [Museth et al., 2005]. The stems,

flowers and leaves are sculpted on top of the pot, and some soil and surface details

are added to the pot itself with freeform surface editing operators. The pot was

scan-converted into a 600× 600× 1200 volume with 7, 384, 242 voxels in the narrow-

band and the final edited model moved out of this bounding box and has effective

dimensions of 654× 600× 1794, with 11, 852, 818 voxels in the narrow-band.

Figures 5.1 and 5.6 show the editing of a horse model. We added a saddle, stirrups

and a bridle to the model, as well as a tail and mane, using our editing tools. The

initial and final models have the same effective dimensions, 944× 2048× 1709. The

initial model has 26, 236, 562 voxels in the narrow-band and the final edited model

has 28, 582, 546 narrow-band voxels.

99

(a) (b)

Figure 5.5: A flower pot is modeled from a superellipsoid. (a) Handles and decora-
tions on the surface are added to the initial model. Soil is added to the top of the
pot. Stems, leaves and the flowers are then modeled above the soil. (b) Close-ups of
the final painted model.

100

(a) (b)

(c) (d)

Figure 5.6: (a,c) Parts of the scan converted horse model. (b) A bridle, and mane
are added. (d) A saddle, stirrups and saddlebag are added. (See Figure 5.1 for the
final model)

101

Figure 5.7: A bas relief model of a heron created with an open level set model.

102

Figure 5.7 presents a design of a heron. It is created with an open level set model

that defines a single “flat” surface that can be modified in regions away from the

boundary. Similar to unenclosed H-RLE level sets [Houston et al., 2006], our level set

models do not need to be defined as closed solid objects. Given our flexible narrow-

band representation, localization of PDE processing, and an explicit inside/outside

categorization of the voxels, we are able to, for the first time, evolve a level set thin

sheet. We can set the bounding box of the object and the Regions of Influence

(ROIs) of the editing operators to be smaller than the extent of the model, thus

avoiding unwanted numerical problems along the sheet boundary. Just modeling a

single sheet surface allows us to make high resolution bas relief type models. The

resolution of the initial volume representing a plane is 3081 × 2057 × 60, and the

effective resolution of the final model is 3081 × 2057 × 69. The initial model has

44, 091, 388 voxels in the narrow-band, and the final edited model has 44, 552, 586

narrow-band voxels.

From the data presented in Tables 5.1 through 5.5, it can be seen that we have

achieved the goal of creating a system that allows us to interactively edit high reso-

lution level set models. Given that the operator functions and PDE processing takes

more computation time than surface display, the timing results presented in these

tables show that our system, with a spatial hash table for storing the level set surface

and a k-d tree for storing the display points, provides an acceptable interactive frame

rate for most of the editing operations. These frame rates compare favorably with

previous volumetric PDE-based modeling systems, which either take many seconds

to minutes to perform a low resolution surface modification [Du and Qin, 2007], or

exhibit interactive rates approximately four times slower than ours [Bærentzen and

Christensen, 2002]. The one model change that was not interactive is the offsetting

operation performed on the heron body in Figure 5.7. This is a large-scale modifi-

103

Model Dimensions Table Size

Number of
Voxels in
Narrow-Band Mean

Std.
Dev.

Fig. 5.1 944× 2048× 1709 24,500,224 27,869,503 1.138 1.067
Fig. 5.5 654× 600× 1794 8,212,932 11,505,899 1.401 1.184
Fig. 5.7 3081× 2057× 69 44,363,320 44,552,586 1.003 1.002

Table 5.1: Statistics for the spatial hash function and hash table. Given are the
number of entries in the hash table (size), and the mean and the standard deviation
of the number of voxels stored in each entry.

cation that affects nearly half of the high resolution surface. The body was created

by first defining the ROI with a boundary curve. The ROI area was then lifted with

a speed proportional to the distance to the boundary curve. To perform this editing

operation required processing almost 27 million voxels; thus the excessive run times.

5.4 Discussion

The goal of our work is to develop techniques that enable interactive editing of high

resolution level set models. There are two potential bottlenecks that may interfere

with the attainment of this goal. The first is the processing and evolution of the level

set PDE and the second is the display of the constantly-changing large-scale model.

These processes run sequentially, and we can only edit the model as fast as the slower

of these two components.

We present techniques for accelerating the former in Section 5.2 by localizing the

editing operations and reducing the size of the PDE domain that must be solved. Fast

data access also affects the speed at which the PDE can be solved. Spatial hash tables,

as described in Section 5.1.1, furnish acceptable access times, while also providing for

the efficient storage of high resolution models and supporting unconstrained out-of-

104

the-box computing. Table 5.1 contains the average number and standard deviation

of voxels per table entry with the given hash table sizes for the example models.

The table shows that most of the entries in our hash tables contain 1 to 3 voxels,

highlighting the effectiveness of the hash function to distribute data over the whole

table and minimize data collisions. Table 5.1 also shows that the spatial hash tables

are able to represent these models with an order of magnitude fewer voxels than a

3-D array. For example the full resolution model for Figure 5.1 would contain over

3.3 billion voxels, while our data structure only stores the approximately 28 million

voxels of the narrow-band.

During our research we implemented and investigated a number of potential data

structures for our level set modeling system, namely DT-grids [Nielsen and Museth,

2006] and run-length encoding (RLE) [Houston et al., 2004]. We found neither of

them to provide the rapid random access and modification times required for an

interactive editing application. DT-grids were developed for high resolution level set

applications that process the complete level set surface, storing the narrow-band data

in dense, lexicographically-sorted arrays. Therefore they do not adequately support

random access, insertion and deletion of data elements, since they assume that the

whole level set surface is processed sequentially for every time step. For example,

inserting a new element into the (sorted) DT-grid is an O(N) operation, where N is

the number of elements in the data structure. Because of this, during development we

abandoned DT-grids as a data structure for our interactive level set modeling system.

RLE was then investigated as a potential method for storing our models.

Table 5.2 presents a comparison of execution times required to perform a variety

of editing operations on the example models using two different data structures, one

based on run-length encoding and the other on spatial hashing of the model’s voxel

data. In general using spatial hash tables provides a 1.5 to 2 times speed-up over a

105

Model
Detail

Time (secs)
with RLE

Time (secs)
with Hashing

fps
with Hashing

Horse, Fig. 5.1. Dimensions: 944× 2048× 1709
Saddle 0.033 0.016 63
Seat 0.33 0.20 5

Mane/Tail 0.0090 0.0025 400
Tail 0.17 0.10 10

Bridle 0.010 0.0083 120
Stirrups 0.016 0.010 100

Flowers, Fig. 5.5. Dimensions: 654× 600× 1794
Pot handles 0.071 0.040 25
Pot details 0.011 0.0066 152
Plant roots 0.014 0.0059 169

Flowers 0.033 0.020 50
Leaves 0.0083 0.0040 250
Soil 0.033 0.018 56

Heron, Fig. 5.7. Dimensions: 3081× 2057× 69
Heron body 322 177 0.006

Feathers 0.0085 0.0020 500
Waves 0.18 0.083 12

Mountains 0.31 0.22 5

Table 5.2: Average execution times (in seconds) needed to compute an editing oper-
ation for one display frame during the creation of a variety of model details. Times
are given for an implementation of RLE Sparse Level Sets [Houston et al., 2004] and
our Spatial Hash method.

Model Std. Dev. Max Min
Fig. 5.1 Initial 0.0084 0.0556 0.0171
Fig. 5.1 Final 0.0081 0.0533 0.0179
Fig. 5.5 Initial 0.0055 0.0391 0.0226
Fig. 5.5 Final 0.0093 0.0457 0.0160
Fig. 5.7 Initial 8.27E-05 0.0313 0.0312
Fig. 5.7 Final 0.0093 0.0326 0.0305

Table 5.3: Statistics for the VBO k-d trees. Given are the standard deviation, mini-
mum and maximum sizes of the 32 VBOs used to display the example models. The
average VBO size (percentage of vertices in a single VBO) is 1/32 (0.031).

106

!"

!#!!$"

!#!%"

!#!%$"

!#!&"

!#!&$"

!#!'"

!#!'$"

!#!("

!#!($"

!#!$"

%" '" $")" *" %%" %'" %$" %)" %*" &%" &'" &$" &)" &*" '%"

+,-./0"

1-,/0"

Figure 5.8: Percentage of vertices per VBO for the flower pot model shown in Figure
5.5. Blue bars represent the distribution for the initial “pot only” model and the red
bars represent the vertex distribution for the final edited model.

run-length encoded data structure, mainly because random access/insertion is faster

with the hash tables. Another major drawback of an RLE implementation is that as

the surface changes it requires additional steps to keep the data structure condensed

and simplified. As the model is modified, run-lengths need to be added, dropped

and merged to keep the data structure compact and precise. Furthermore, we found

that the RLE implementation used about 33% more memory than the spatial hash

implementation in our studies, given the overhead of the run-length data and the

pointers/indices needed to connect the run-lengths.

Figure 5.8 presents the distribution of display vertices (as a percentage) in the

32 VBOs used to display the flower pot model in Figure 5.5. The distribution is

produced via the k-d tree subdivision described in Section 5.1.2. The average VBO

size (percentage of vertices in a single VBO) is, of course, 1/32 (0.031), and the

107

Model #Vertices
Fig. 5.1 3,749,988
Fig. 5.5 1,055,282
Fig. 5.7 6,291,456

Table 5.4: Number of vertices for each model.

VBOs
1 8 16 32 64 128

Model E E R E R E R E R E R
Fig. 5.1 .0656 .0083 5.86 .0036 7.13 .0022 7.87 .0012 8.74 .00063 9.71
Fig. 5.5 .0265 .0035 2.00 .0015 2.32 .00055 2.62 .00046 2.90 .00036 3.16
Fig. 5.7 .0994 .0121 7.96 .0065 9.96 .0034 12.1 .0016 14.2 0.0011 16.2

Table 5.5: Average frame times (in seconds) needed to remap, transfer graphics data
and draw the VBOs after an editing operation (E). Times (in seconds) needed to
rebuild (R) the VBO k-d tree. Times are given for rendering with 1, 8, 16, 32, 64 and
128 VBOs.

standard deviation of the initial model distribution is 0.0055 and the final model

distribution is 0.0093, with the maximum and minimum sizes being 0.0457 and 0.0160.

The distribution demonstrates that the fast, approximate technique used to assign

vertices to VBOs creates a relatively even distribution, with most VBO sizes being

within 33% of the mean. The imbalance of the VBOs does increase after the model

has been modified, but as stated earlier, this imbalance does not significantly affect

the time needed to display the model. We found similar results with the horse model.

Since the heron model is effectively a height field, we utilize an X-Y only partitioning

to produce a nearly uniform distribution of display points over the VBOs. The

distribution statistics for the three models is listed in Table 5.3.

Having the display vertices subdivided and distributed amongst multiple VBOs

in order to improve graphics performance raises the question of what is the optimal

level of subdivision. We performed a simple editing operation, a point-click and pull

108

operation with a radius of 5 voxels that creates a 20 voxel protrusion, and gathered

display time information for several levels of spatial subdivision (and therefore several

total numbers of VBOs) to explore this issue. The editing operation was performed on

the initial horse, pot and open level set models. The results of this study are presented

in Table 5.5, and include average times (in seconds) needed to display the vertices

after editing (E) for each frame using a number of VBOs (from 1 to 128) produced

via k-d tree partitioning. The VBO data includes the time needed to remap, transfer

graphics data and draw the VBO. Also included are the times (in seconds) required

to repartition the display vertices of the model (R). While rendering times go down

with increasing VBO number, the repartitioning times increase. Table 5.4 shows the

number of vertices used to display each model.

These experiments led us to use 5 levels of subdivision with 32 VBOs when creating

the example models. By comparing the editing operation times in Table 5.2 with

the display times in the 32 VBOs column of Table 5.5 it can be seen that with

this number of VBOs more time is needed to compute the editing operation than to

display the resulting dynamic model. The one exception is the simple feather detailing

operation used in Figure 5.7. Choosing to display the level set model with 32 VBOs

gives graphics frame rates of 300 fps and better, and makes the editing functions

and PDE processing the computational bottleneck during interactive modeling. Of

course higher levels of subdivision produce greater repartitioning (R) times. Since

repartitioning is required so infrequently we believe that achieving interactive display

performance that is not limited by rendering times (for our models/application) is

worth the few extra seconds that may be needed occasionally for VBO restructuring.

We also compared our results to previous PDE-based modeling work in terms

of model resolution, processor speed and running times. The most recent related

study [Du and Qin, 2007] uses a maximum resolution of 65 × 65 × 65 and an ap-

109

proximately three times slower CPU. Their results show that at this resolution it

takes 16 seconds to 6 minutes for various operations to converge on a solution. The

previous volume sculpting work [Bærentzen and Christensen, 2002] using an octree

representation for the level set model can edit volumes with an effective resolution of

1024×1024×1024. They also solve the level set equation on a sub-volume and achieve

somewhat interactive running times. They show that on a 20 × 20 × 20 sub-volume

their average running time is 6− 7 frames-per-second (fps). A similar operation runs

100 fps with our framework on an approximately 4 times faster CPU.

110

6. Detail Preserving Surface Editing for Multiresolution Level Set Models

Multiresolution modeling techniques have been developed for computer graphics

and geometric modeling. They provide a powerful and expressive modeling paradigm

which supports manipulations at varying levels of detail. An underlying level-of-detail

representation enables the user to work at any desired resolution, hence providing

speed-ups and modeling capabilities which are crucial for interactive editing appli-

cations. As defined by Zorin et al. [1997] and Kobbelt et al. [1998], a hierarchical

structure is needed to perform multiresolution shape editing, where a model at level

N of a hierarchy is produced by combining the model details stored at level N with

the lower resolution model defined at level N − 1. Given this structure, the user

may edit the model at any level of the hierarchy, and the details defined at higher

resolutions will automatically be added to and maintained on the modified model;

thus high resolution details follow the movements of an edited low resolution model.

The editing operators described in Chapter 4 move the surface with an algorith-

mically generated speed field in directions normal to the surface. Such motion causes

regions of high curvature to collapse and merge, and results in the smoothing of the

surface in these areas. It is also well known that the computational methods used

to advect a level set model smooth out the details of the interface because of nu-

merical dissipation. Therefore it is necessary to develop techniques for maintaining

geometric details during level set editing operations. There are methods developed

to overcome/correct numerical errors through the use of higher order, hybrid and

adaptive techniques. However, higher order methods [Harten et al., 1987, Liu et al.,

1994] are computationally complex which makes them undesirable for interactive ap-

plications. Hybrid and adaptive methods [Losasso et al., 2004, Enright et al., 2005]

are used in conjunction with a semi-Lagrangian scheme and octree subdivisions to

111

Click & Pull

Level 1 Level 2 Level 3

Figure 6.1: A multiresolution model is modified at Level 1. The modifications are
incorporated into higher levels of the hierarchy.

provide solutions for capturing passively advected interfaces. These methods are also

not applicable to our problem as explained later.

We have developed a hierarchical, multiresolution representation for level set

models that allows for rapid decomposition and reconstruction of the complete full-

resolution model. Editing in lower resolutions facilitates interactivity, as well as en-

abling a level-of-detail editing capability. The low-level modifications are later scaled

up and incorporated into the higher resolution model as demonstrated in Figure 6.1.

There are three key aspects of this process that lead to the loss of surface details.

First, creating lower resolution models inherently produces a loss of detail. Second,

the lower resolution surface is smoothed out during editing due to the motion in

the normal direction and numerical dissipation. Third, incorporating the low-level

manipulations into the higher resolution model overwrites the latter and the high

resolution details are lost unless explicitly saved and restored.

A major focus of our research has been on how to link high resolution surface

features to low resolution surface movements while maintaining detailed structures at

all scales. We capture and store surface details at all resolutions in particle sets and

later use these particles to add the surface details back to the models. The particle

sets are dynamic and stay on the surface at all resolutions while the surfaces are

edited. Compared to previous particle level set methods [Enright et al., 2005], our

112

technique does not depend on particles being advected with the surface. This allows

us to use the particles to represent details without the need to evolve the interface at

higher resolutions. The particle set also facilitates geometric texture transfers.

This chapter presents a hierarchical, multiresolution representation of level set

models to facilitate multi-level surface manipulations, as well as algorithms for trans-

ferring low resolution surface movements to high resolution surface features while

maintaining detailed structures at all scales.

6.1 Hierarchical Level Set Models

We have developed a hierarchical (H) data structure for representing multireso-

lution (M) level set models. We also developed methods for creating the H-M data

structure from a high resolution level set model, and for processing the H-M data

structure to create a high resolution level set model. The algorithms maintain the

proper spatial relationship between high resolution details and low resolution shapes.

Keeping high resolution details connected to the motion/deformation of an underly-

ing low-resolution shape is the essential feature of multiresolution models. Given this

hierarchical structure, the user may edit the model at any level of resolution, and the

details defined at higher resolutions will automatically be added to and maintained

on the modified model.

In our work a hierarchical level set model is defined by a successive set of sparse

grids, where the spatial resolution of grid N is twice (in all three dimensions) the

resolution of grid N − 1. In other words for every grid point in grid N − 1 there

are eight grid points in grid N. The eight N grid points represent the same portion

of 3-space represented by the one N − 1 grid point. This is clearly the definition

of an octree data structure. Given this hierarchical, multiresolution data structure

which stores the surface at each level, it is straightforward to go through the octree

113

structure superimposed over the successive grids in order to produce the final, full,

high resolution model that it represents.

A hierarchical, multiresolution level set model can be produced from a high res-

olution level set model by a successive set of smoothing and differencing operations.

For example, a curvature-based smoothing deformation may be applied to the full

resolution model to remove some details [Museth et al., 2002, Osher and Sethian,

1988, Tasdizen et al., 2003]. The smoothed model is used to extract the detail infor-

mation that is stored in level N of the H-M data structure. The details are encoded

as offset vectors from the smooth surface to the detailed surface and stored within a

particle set that is sampled on the smooth surface. These details can later be used to

add the high resolution details back onto the smooth model in order to reconstruct

the original detailed model. The smoothed model now becomes the model associated

with level N − 1. The same smoothing and detail extraction is applied to the N − 1

model to produce the grid point values for level N − 1 of the H-M data structures

and producing the N − 2 model.

The challenge here is to automate this process, specifically controlling the smooth-

ing process to remove a limited amount of detail at each iteration/level. Curvature-

based smoothing can be used to remove high resolution details. However, since the

amount of smoothing is directly proportional to the surface curvature, it is harder

to define a uniform system that will generate consistent smoothing results for a wide

variety of models. Downsampling and upsampling are two fundamental and widely

used image operations, with applications in image display, compression, and pro-

gressive transmission. Downsampling is the reduction in spatial resolution, whereas

upsampling increases the spatial resolution. Youssef [1999] examines several classes

of filters for down/up-sampling, and finds that binomial filters produce the best re-

sults in terms of signal-to-noise ratio (SNR) between the original and the down-then-

114

upsampled images. Besides their superior SNR performance, binomial filters offer

the added advantage of having rational coefficients with powers of two denominators

that improve computational efficiency. Binomial filters form a compact rapid finite

impulse response (FIR) approximation of the (discretized) Gaussian.

We use a volume filtering and downsampling method that creates consistent

smoothing results with high efficiency. The original high resolution narrow-band vol-

ume is filtered using a three dimensional binomial filter with kernel size 3×3×3. The

resulting smoothed volume is then downsampled to reduce the spatial dimensions by

two along each major axis. We then apply the binomial filter to the lower resolution

volume and further downsample to create the hierarchical volumetric structure along

with geometric details. The lower resolution volumes created via downsampling are

renormalized in order to preserve them as signed distance fields using fast marching

methods [Sethian, 1995, Tsitsiklis, 1995]. The downsampling stops upon reaching a

predefined number of levels or when the resolution is too low to define the full extent

of the narrow-band. Our framework can represent an object with a volume resolution

as small as 83.

We have created a high resolution sampling of particles residing directly on the

level set surface. These particles are placed on the smooth surface after binomial

filtering and before downsampling during the hierarchy generation process. Each

stores a scalar representing the signed distance to the pre-filtered detailed surface at

the current resolution, as well as the surface normal of the smooth surface at that

particle’s location. The distance is calculated by finding the intersection of the surface

normal and the original detailed surface. The signed distance field representing the

detailed model facilitates finding the intersection point, as well as determining the

inside/outside status of the particle with respect to the detailed model.

The particles are sampled uniformly on the surface with a rate of one particle

115

per surface crossing voxel. A voxel is called “surface crossing” if the distance value

stored in that voxel has a sign (positive or negative) that is opposite of one or more

of the distance values stored at the 26 voxels adjacent to it. Each particle carries

an offset value and a direction vector that capture the difference between the filtered

and unfiltered level set surfaces. The details are extracted by smoothing the level set

surface, creating a sampling of particles on the smooth surface, and calculating the

straight path that these particles would take in order to reach the detailed surface.

This path is then stored within each particle as a combination of a unit vector and

a floating point number. The vector represents the direction of the path, and is

the surface normal at the particle’s initial position on the smoothed surface. The

floating point number is the signed Euclidean distance between the two surfaces in the

path direction. The sign denotes the relative positioning of the particle with respect

to the detailed surface, i.e. inside/outside status. This representation might seem

redundant considering one can combine the unit vector and the scalar into a single

vector; however, we later show that this representation facilitates the construction

of the speed function required to evolve the level set surface when adding geometric

details back into the model. The detail particles are also stored in spatial hash tables.

Figure 6.2 illustrates how detail particles are created for a single level of the hierarchy.

After the multiresolution level set hierarchy is created, we can reconstruct the

volume at level N through upsampling the volume at level N − 1 and adding back

the details stored at level N . The details are added via an iterative level set evolution

that uses the offset values and direction vectors stored at the particles to form the evo-

lution’s speed function. The particles move with the interface and the speed function

is calculated every iteration using offset values stored at the updated particles.

Section 6.3 describes in detail the creation of the particle set, as well as its use

during the level set evolution that adds back the high resolution surface details. The

116

High resolution
(HR) curve

Filtered (smooth)
curve

Sample detail
particles on HR curve

Move detail
particles onto
smooth curve

O�sets are calculated
based on locations on
 HR and smooth curves

O�set vector

Figure 6.2: An illustration of the detail generation process.

Original
Model at
Level N

Model at
Level N-1

Smooth
Model at
Level N

Reconstructed
Model at
Level N

Smooth
Downsample

Add Details

Upsample

Detail
Particles at

Level N

-

+

Extract Details

Figure 6.3: Flowchart of the hierarchical multiresolution level set modeling frame-
work.

117

flowchart of the hierarchical model creation process is presented in Figure 6.3. A

closeup of the armadillo model shows the surface at each step of the process. The

original model at level N is smoothed to create an intermediate result that is used to

extract details. The state of the surface particles prior to adding the details is shown

on the lower left. The particles are color coded depending on the sign of the offset

values. The smoothed model is then downsampled to create the lower resolution

model at level N − 1, which is saved as a part of the hierarchy and later can be

upsampled to be used as the starting/base model in the detail adding process.

6.2 Multiresolution Surface Modeling with Level Sets

Given the evaluation/reconstruction algorithm previously defined in Section 6.1,

the user is able to view and edit a model associated with level N of the H-M structure

using our interactive editing tools. After the editing is complete the changes to the

model are cascaded through the H-M structure in both directions of the hierarchy

given that higher/lower-resolution models exist within the hierarchy. Figure 6.4 is a

flowchart showing the steps taken throughout the hierarchy following an edit at the

middle level.

We extract the narrow-band in a localized region around the modified surface and

upsample this subvolume to one higher resolution, i.e. we double the spatial resolution

in each dimension, using tri-linear interpolation. Since each modified voxel at level N

is represented by 8 voxels at level N +1, the voxels within the ROI at level N +1 can

be easily identified. All grid points within the ROI at level N + 1 are then replaced

with new values from the upsampled volume and the updated surface is seamlessly

blended with the unmodified surface at the ROI boundary using curvature-based

smoothing [Museth et al., 2002]. The upsampling increases the extend of the narrow-

band, i.e. the radius of the narrow-band tube, by a factor of two. Fast marching

118

LEVEL N-2 LEVEL N-1 LEVEL N

Modify
Level N-1

Model

Add
Level N-1

Details

Retrieve modi�ed
Narrow-Band

(MNB)

Upsample
MNB

Blend with
Level N
model

Add Level N
Details

Smooth
MNB

Create
Detail

Particles

Add New
Detail Particles

to Level N-1

Remove Old
Detail Particles
from Level N-1

Downsample
MNB

Blend with
Level N-2

model

Figure 6.4: Multiresolution surface editing.

methods are used to re-initialize the narrow-band [Sethian, 1995]. Since the high

resolution details are filtered out prior to downsampling, these details are also absent

in the upsampled volume. We project the detail particles onto the level N + 1 ROI

and use level set methods described in Section 6.3 to reintroduce higher-resolution

geometric details on the modified surface.

Going towards lower resolutions in the hierarchy, we recreate the H-M structure

(grid points and particles) locally between levels 1 and N − 1. This is achieved by

the filtering and downsampling method explained in Section 6.1. The downsampling

reduces the extent of the narrow-band, i.e. the radius of the narrow-band tube, by

half. Fast marching methods are used to re-initialize the narrow-band. Every new

sub-volume is then blended with the existing volume at one lower hierarchical level

and so on until the lowest level is reached. If the higher level edit does not translate

119

to a sub-volume that can be represented with at least 83 voxels in lower resolution

levels, the modifications are not incorporated into the lower levels of the model hi-

erarchy. Section 6.5 demonstrates the level-of detail editing achieved through our

multiresolution framework.

6.3 Detail Preserving Surface Editing

We capture and store surface details at all resolutions in particle sets and later

use these particles to add the surface details back to the models. The particle sets

are dynamic and stay on the surface at all resolutions while the surfaces are edited.

Initially we implemented the particle level set method as explained in Enright et al.

[2002a]. One drawback of this method is that it requires advecting the particles

along with the surface at every step of the simulation. This process is slow at higher

resolutions especially during substantial modifications to the surface, because large

numbers of particles need to be moved several times to reach their destination on

the deforming surface. We then developed a new method that can project these

particles onto the final surface once the interactive editing is completed. Each method

is described in Sections 6.3.1 and 6.3.2 and a comparison in terms of run times is

provided in Section 6.6.

6.3.1 The Advection Method

Using the Advection Method, once created the detail particles are kept on the

surface during all modifications made to the model. During modification, we can

easily determine the new location of the detail particles using the signed-distance

value of the level set function and the offset vector associated with the particles. The

particles are moved along the offset vector, and an intersection at a zero crossing of

the level set surface is calculated using the signed distance values. The particle is

120

(b) (c) (d) (e)(a)

Figure 6.5: (a) The scan converted armadillo model. (b) The modifications to the
model smooth out surface details on the back. (c) Two different views of the smooth
surface. (d-e) Different views of the modified armadillo model after the surface details
are added.

then moved to this intersection point on the surface. The CFL condition that restricts

the surface to move less than a voxel every time step ensures that the particles will

always reside within the narrow-band of the surface after each iteration of the level

set evolution. Once the editing is complete, the direction of the offset vectors are

updated with the surface normals of the edited surface. The next stage uses the

particles to add the surface details back onto the edited model.

Figure 6.5 shows how details are added using this method after modifying the

surface. The surface edit creates a bump on the turtle shell at the back of the model

by pulling the surface within a symmetrical ROI around a single point. The surface

is stretched and the turtle shell details are smoothed. The detail particles that were

created prior to the edit follow the level set surface during the edit, and new particles

are added using tri-linear interpolation. These detail particles are then used to add

the shell details back onto the model using level set evolution and the speed function

explained later in Section 6.3.3. The armadillo model is edited at 5123 resolution at

1.9 fps (see Table 6.1).

121

6.3.2 The Spring Method

Even though the method of Section 6.3.1 can effectively keep track of the detail

particles as the surface moves, it can only be used during the interactive editing of a

single resolution/level of the hierarchical model. In our approach to multiresolution

editing we modify the model on a particular resolution level and this modification

is incorporated into higher and lower resolution representations within the hierarchy

once the edit is completed. Since the models at higher resolutions are not edited

incrementally but with a single block update, we cannot move the particles along

with the surface at the higher levels of the hierarchy. We need a more direct method

that remaps the detail particles onto a higher resolution model after it has been

modified by an edit performed at a different level of the modeling hierarchy. The most

important aspect of this process is keeping the relative positioning of the particles

consistent during the projection. In order to keep the local neighborhoods of particles

intact, we introduce a spring system that connects each particle to all of its 1-ring

neighbors. The initial rest length of each spring is calculated as the Euclidean distance

between particles, which initially places the system in a stable steady state. Once

the connections are made, any dislocation of one or more of these particles from

the steady state triggers a response from their neighbors which cascades through the

entire set of particles until the system reaches a steady state once more.

Two concepts explained previously in Chapter 4 are pertinent for detail preser-

vation. The first concept is the editing boundaries, which define the extent of local

surface modifications. The model is modified only on the portion of the surface en-

circled by a geodesic curve drawn or automatically generated on the surface. Any

surface voxel on or outside this boundary is considered frozen and does not change its

value during interactive editing. This boundary curve provides us with the first set

of constraints in our spring system. The particles located within a voxel intersected

122

by a boundary curve are called boundary particles. These particles are also consid-

ered frozen and are immobile during the entirety of the process that takes the spring

system to a steady state.

The second concept is the use of 3D points and curves that are placed on the

surface as handles in order to enable user interaction. Particles located within a

voxel intersected by a handle curve or point are called handle particles. The handle

points and curves, which are defined as a set of handle points, move with the surface

during interactive editing. The final position of the handles can be used to move the

handle particles onto the edited surface. These particles also stay fixed at their new

location during the following step, which repositions particles to reach a new steady

state with the spring system.

Particles that are positioned neither on the geodesic boundary nor on the handles

can move under the influence of two energies, the energy created by the springs

connected to them and the constraint keeping them on the level set surface. The first

one is calculated from the equation for the potential energy of a spring. For each

particle i located at x, the energy Ei is

Ei(x) =
∑
s∈Si

k · (ds − ds
0)2, (6.1)

where Si is the set of springs (s) that are attached to particle i. k = 1 for all springs,

ds is the spring’s current length and ds
0 is the initial rest length of the spring. The

particles move in the direction of the spring energy gradient until they are evenly

spread between the boundary and the handle particles, i.e. the system reaches a

steady state. We also need these particles to stay on the level set surface. Therefore,

following each spring-relaxation step the particles are projected onto the surface in

the direction of the surface’s distance field gradient.

These two processes are repeated one after another, 1 projection step followed by

123

20 steps of spring energy minimization, until a state is reached where all particles

are in close proximity to the surface, and the spring energy gradient is close to zero.

Two conditions, one for proximity to the surface and other for the steady state of

the spring system, are tested between each successive sets of projection and energy

minimization processes and the detail adding process terminates when both conditions

are satisfied. The first condition is satisfied when the maximum closest distance to the

surface for all particles is under 0.1 voxels, and the second condition is satisfied when

the maximum magnitude for the gradient of Equation 6.1 at all particle positions is

under 0.1 voxels. Once the stopping criteria is satisfied, a final projection step places

all particles on the surface, and the direction of the offset vectors are updated with

the surface normals at the final particle locations. The next stage uses the particles

to add the surface details back onto the edited model.

6.3.3 The Speed Function

Once the low resolution edit is smoothly blended with the high resolution surface

using curvature-based smoothing near the matching boundaries and the detail parti-

cles are placed on the surface, the algorithm moves to the next stage where a speed

function is built using the offsets stored at the detail particles. The details are only

added to the modified parts of the surface and only the detail particles that cover the

modified areas contribute to the speed function. The following speed function is used

to add details to a level set surface;

F (x) = D(x)

∑
p∈P (x)

ωp|Op|

max(|Op|)
∑

p∈P (x)

ωp

(6.2)

124

D(x) =


−1

∑
p∈P (x)

ωp
~Vp∣∣∣∣∣ ∑

p∈P (x)

ωp
~Vp

∣∣∣∣∣
· ~n(x) < 0,

+1 otherwise

(6.3)

ωp = e
−G(lp,x)2

2σp2 (6.4)

where x is a point on the surface, P (x) is the set of 8 nearest particles to x,

Op and ~Vp are the scalar (O) and the unit vector (~V) forming the offset associated

with particle p, and max(|Op|) is the maximum of the |O| values stored at all of

the particles within the ROI. D(x) in Equation 6.3 determines the direction of the

movement along the surface normal ~n(x) using the dot product of the normal and

the weighted sum of the V s stored at all contributing particles. The weight for each

particle in P (x) (ωp) is calculated using Equation 6.4, based on the geodesic distance

between x and the 3D location of each particle in this set (lp). G(x, y) is a function

that returns the geodesic distance between two 3D points on the surface (x and y).

The Gaussian function provides a smooth blending of all neighboring offsets. σp is

set to one half of the geodesic distance to the farthest particle in set P (x). This

weight function has a positive but rapidly reducing value as the geodesic distance

increases and allows the closest particles to contribute more to the speed function at

point x. The speed function is incorporated into the level set PDE and is used to

move the level set surface. Equation 6.2 uses the scalar offset values from a small

neighborhood of particles to determine how much the level set function stored at

each surface crossing voxel will change. The speed function F (x) computes a floating

point value between −1.0 and 1.0 that implicitly moves the level set surface along the

surface normal direction at x, the location of the voxel.

125

6.3.4 Sampling

While constrained to the surface, the particles might clump together or stray away

from each other as the surface shrinks or stretches. In order to address the latter, we

keep a minimum sampling of one particle per surface crossing voxel by adding new

particles as the surface stretches. A 3D point on the level set surface within a surface

crossing voxel can be computed using the signed distance value stored at this voxel

and the gradient calculated at this voxel’s location. Together, the signed distance

value and the normalized gradient creates a vector, which provides a point on the

level set surface when added to the said voxel’s location. A new particle is placed

at this point and its offset is calculated by interpolating the offsets of the 6 nearest

particles to the new location. We use tri-linear interpolation for calculating the offset

from nearby particles.

We have also experimented with tri-cubic interpolation. Higher order interpolation

methods generate better quality surfaces while lower order methods generate faster

results. However, for the examples demonstrated in this paper, we did not observe

a visible improvement in the edited surfaces when using tri-cubic interpolation and

chose to use the lower order yet faster alternative in order to have better performance.

The user has the option to choose the interpolation scheme for each editing session.

Some particles may clump together in a single surface crossing voxel if the surface is

shrinking. Removing or blending some of these clumping particles would result in a

loss of information. Since the hash table can store multiple particles per (X, Y, Z)

index, all detail particles associated with a single voxel can be maintained during

surface editing.

126

6.3.5 Adding the Right Amount of Details

All particles keep track of how far they have moved during the detail addition

process using a path variable. The path is set to zero for all particles initially and it is

updated each time the interface and the particles move by the amount of displacement

between the previous and new particle positions. The particle positions are updated

by finding the intersection of the level set surface with one of the two vectors (lp + ~Vp)

or (lp − ~Vp), where lp is the current position of the particle and ~Vp is the direction

component of the offset associated with this particle. Since the speed at a given point

on the surface is based on information from a number of particles, it is possible that

any point on the surface may move opposite to the offset direction associated with

one or more of the closest particles at this point. The bidirectional computation of

the intersection point ensures that the particles stay on the surface in such cases.

The amount of displacement is subtracted from the path if the particle moves in −~Vp

direction and added otherwise.

The path variable is also used to determine when the detail-addition process should

stop, producing the correct amount of details on the surface. The level set surface is

moved with the speed function defined in Equation 6.2 until all particles have moved

to within 0.1 voxels of the offset value (O) associated with each particle. Particles

reaching these limits no longer contribute to the speed function, thus slowing down

and/or stopping the surface within their influence. If all particles no longer contribute

to the speed function the interface comes to a complete stop and no further details

are added. After the process converges on a solution, the user may choose to boost

the details manually by adding more steps to the level set evolution.

The tolerance of 0.1 voxels is used in order to avoid particle oscillation. This

tolerance coupled with the bidirectional movement of the particles gradually moves

the particles toward their destinations on the final model as they add details to the

127

surface. We observed that it is possible for particles to travel back and forth in

close proximity to the surface (oscillate) due to the smoothing nature of the level set

evolution. A small amount of added detail may be smoothed during an evolution.

This happens rarely at very sharp corners and is a well-known property of level set

surfaces. A binary flag coupled with an integer counter is used to keep track of

particles crossing the surface at each consecutive iteration of the level set evolution.

The binary flag is set each iteration with respect to the particle’s direction, i.e. towards

or opposite the offset vector, after each iteration. Each time there is a direction change

the counter is increased, otherwise the counter is set to 0. If the counter reaches 2,

we can conclude that the particle has moved back and forth once. This may very

well happen during the natural course of the detail-adding process. For this reason, a

particle is not considered oscillating until the counter reaches 5. Oscillating particles

are considered to be at their destination when the automated criterion is evaluated

for stopping the level set evolution.

A small set of particles contribute to the speed at every surface voxel. This may

cause the surface to move slightly more than signified by a single particle. Such a

case is easily detected and the surface is stopped in those areas with particles that

have reached their final destinations. Since the surface does not move more that one

voxel at each iteration, a particle’s final location will always be within one voxel of

the location specified by its direction vector and offset value.

6.4 Geometric Texture Transfers

Traditional texture mapping defines the surface color of an object with a 2D im-

age. Geometric texture mapping is the 3-dimensional extension of traditional texture

mapping, and it procedurally defines geometric surface features of a 3D model. With

geometric texture transfer, surface characteristics of one 3D model are extracted and

128

applied onto another model to create a variety of geometric details. The techniques

described so far for preserving surface detail can also be used to transfer geometric

detail from one part of a level set surface to another or between two different level

set surfaces.

Details can be extracted from an ROI on a source level set surface by the smoothing

and differencing method that produces detail particles as described in Section 6.1,

which are then transferred near a new location on a destination level set surface. A

spring system is then used to place the particles on the destination surface. The speed

function in Equation 6.2 can then be used to add these details onto the new surface.

The user can specify the details by clicking on a point on the source surface (Ps)

and choosing a radius of influence (R1). A flood fill algorithm goes over the surface

and identifies all detail particles within a geodesic distance smaller than R1 to Ps.

The surface enclosed by the geodesic curve automatically generated at distance R1

becomes the source region of influence (ROI). The next step is to transfer the detail

particles to the destination ROI which is defined by the user in the same manner as

the source ROI, using a point Pd and a radius R2. The source and the destination

ROIs are not necessarily the same size, i.e. R1 6= R2. Since the spatial hash table of

our level set data structure can store multiple particles per location, having particle

spacing contract is easily handled when R1 is greater than R2. When R1 is less than

R2, there are two traditional methods used to apply a texture over a larger area,

stretching or tiling (repeating) the details to fill in the destination ROI.

The spring system repositions the particles evenly between the editing handles and

the boundary regardless of the change in scale. However, it converges on a solution

more rapidly if the initial placement of particles is within the narrow-band around the

destination surface. We can initially move all source particles closer to the destination

ROI by using the translation vector T = ld− ls, where ls and ld are the 3D locations of

129

the points clicked on the source(Ps) and destination(Pd) surfaces respectively. Taking

the cross product of the surface normals at Ps and Pd provides us with an axis of

rotation (~Vr) and the dot product of these normals can produce the positive angle

between them (θ). We rotate all particles by θ around ~Vr. Note that the aim is not

to move them exactly on the destination surface but to get the particles close to the

destination ROI in order to prepare them for the next stage which moves them onto

the surface.

Boundary particles are not projected with the method described above. Boundary

particles are moved to the destination surface using two different algorithms depend-

ing on the technique chosen by the user, stretching or tiling the details. The particle

at Ps moves to Pd initially and stays fixed for the remainder of this stage for both

techniques.

In order to stretch the details, the boundary curve on the source surface (Bs) needs

to be stretched in order to match the boundary curve on the destination surface (Bd).

After matching the source and destination boundaries, the spring system can be used

to stretch the details over the surface. Both curves are defined as Catmull-Rom splines

that are drawn on the level set surface. A point by point matching between the source

and the destination boundary is used to move the points forming the source boundary

into positions lying on the destination boundary. We create two tangent planes to

the level set surface, one at Ps and the other at Pd. The source boundary curve (Bs)

is projected onto the tangent plane created at Ps and the destination boundary curve

(Bd) is projected onto the tangent plane created at Pd. The points of the projected

source and destination curves keep references back to the points from which they

originated on Bs and Bd respectively. All points forming the projected Bs are then

translated and rotated onto the tangent plane at Pd.

A series of rays connecting Pd to each point on the now projected and transformed

130

Ps

Bs

Tangent plane at Ps

Project all
particles

Pd

Bd

Project
handle & boundary
particles

Spring

Relax springsMove to surface

Source surface

Source particles

Destination surface

Destination particles

Tangent plane at Ps

Tangent plane at Pd

Figure 6.6: A 2D illustration of geometric texture mapping via detail particles. (The
tangent planes are drawn below their actual locations).

Bs curve is intersected with the projected Bd. This intersection point lies between two

projected points on the tangent plane, and each carry a reference to a point on the

original Bd. Using the position of the intersection point between the two projected

points and the two points on Bd, a position on the destination curve is interpolated.

Using the backwards reference stored at the point on the projected source boundary,

the point on Bs is moved to this new position lying on Bd. All particles that are

within a voxel of the point on Bs can now be moved to a new position around Bd.

The relative positioning of these particles and points on Bs is kept the same. With

this, all points on Bs move so that they are on Bd, and all particles that are within

a voxel around Bs move so that they are positioned around Bd. These particles also

stay fixed during the next step that uses the spring system to reposition the rest of

the particles within the ROI. Once the handle and the boundary particles are fixed in

their places, the spring system moves all other particles within the ROI distributing

them over the surface. New particles are added to create a uniform sampling using

131

techniques explained earlier in Section 6.3.4. Figure 6.6 illustrates the geometric

texture mapping process in 2D. Note that the tangent planes at Ps and Pd are drawn

below their actual coordinates to present a clearer image of the projection process.

The particles labeled Ps and Pd (drawn in green) are the same particles drawn in the

middle on the tangent planes (also drawn in green).

Another solution tiles/repeats the details as many times as necessary to fill in the

destination ROI. In this solution a set of center points (Cp) d = 2 ∗R1− ε away from

each other are chosen on the destination surface. Initially, Pd is added to Cp and its

location is marked along with all surface voxels within a geodesic distance d to Pd.

The closest unmarked surface voxel in the destination ROI is then added to Cp and all

unmarked surface voxels within d around this voxel are marked. This algorithm keeps

adding points to Cp until all surface voxels within the destination ROI are marked.

The next step transfers the detail particles from the source surface to each of the sub-

ROIs on the destination surface defined by the points in Cp and the radius R1. The

geometric details are incorporated into the sub-ROIs using the methods described

in Sections 6.3.2 and 6.3.3 . The offsets of overlapping sub-ROIs are blended using

weighted averaging within ε distance of sub-boundary curves defined by R1 to create

smooth transitions. Figure 6.11 shows an example of the details being both stretched

and tiled over a surface.

6.5 Results

We have used our multiresolution surface modeling framework to create and mod-

ify the models shown in Figures 6.1, 6.7, 6.8, 6.9 and 6.10. The frog, girl and lion

models were originally scan converted at 5123 voxels resolution. The disc model is

created from an implicit equation and sampled on a 2563 volume.

The frog model (Figure 6.7) represented with a 2563 volume dataset is modified

132

(a) (b) (c)

(d) (e) (f)

Figure 6.7: (a) Original scan converted model. (b) Low-resolution(LR) model after
filtering and downsampling. (c) A low-resolution edit modifies the general shape of
the head. (d) The modified high resolution model with details. (e-f) An example of
further editing the model at the higher resolution.

133

Model after Level 2 changes are blended

Model after Level 3 details are added

Original Level 3 model

Low resolution
surface modi�cation

Level 2

Level 3

Level 1

Model after Level 1 changes are blended

Model after Level 2 details are added

Original Level 2 model

Original Level 1 model Modi�ed Level 1 model

Figure 6.8: The model is modified at Level 1. The modified part of the surface is
upsampled and blended in with the Level 2 model. Level 2 details are added and the
detailed Level 2 surface is upsampled and blended with the Level 3 model. Finally,
Level 3 details are added to create the modified high resolution surface. The original
models at all levels are also included in the figure.

134

by elongating its head. Although it is localized, this operation is still slower on a

higher resolution model. Modifying the models at lower resolutions facilitates not

only level-of-detail editing but also interactivity. Once the coarse adjustments are

done, the higher resolution (5123) details are added in at a higher level of the modeling

hierarchy as shown in Figure 6.7(d) and (e).

Figure 6.8 shows several stages of a multiresolution edit applied to the girl model

shown also in Figure 6.1. The model is edited at the first level of the hierarchy and

the changes are upsampled and blended with the second and third levels. Details are

added to the model at both its second and third levels. Three different stages of each

detail-addition process are provided along with the original unmodified versions of

each level for better comparison.

The lion head is edited at a resolution of 2563 to remove the capital on top of its

head. The modified part is then upsampled and locally blended into the 5123 model.

Figure 6.9d shows the smooth area on top of the head. The details are extracted

from the back of the same model as shown in Figure 6.9e. The detail particles are

color-coded, green representing positive and red representing the negative offsets. A

positive offset means that the surface will move in the normal direction during detail

addition and negative offsets move into the surface. The final lion model with hair

details on top of the head is shown in the final frame.

One advantage of using level sets is that we do not need to assume the source and

destination surfaces are similar in topology. The disc model in Figure 6.10 is created

from the implicit equation for a superellipsoid in Equation 6.5 with a = b = 128,

c = 50 and n1 = n2 = 1.0. The texture is also created implicitly from tiling a set of

superellipses defined is Equation 6.6 with a = b = 10 and n = 4.0, side by side on a

2D grid in a repeating pattern.

135

(a) (b) (c)

(e) (f) (g)

(d)

(h)

ROI
bounding box

Figure 6.9: (a) Original scan converted model. (b) Low-resolution(LR) model after
filtering and downsampling. (c) An edit on the LR model removes the top part and
smoothes the head. (d) The LR modifications are upsampled and blended into the
high resolution(HR) model. (e) Back view of the original scan converted model. The
details are extracted from within the highlighted ROI. (f) Top: The detailed surface
Bottom: The detail particles (g-h) The details that are extracted from the back of
the original HR model are added on top of the edited model.

(b) (c) (d) (e)(a)

Figure 6.10: (a)The original genus-0 disc model. (b) The surface is modified via
geometric texture mapping using a checkerboard pattern. (c) A hole is cut in the
center, creating a genus-1 model. (d) A close-up of the smooth surface before details
are added. (e) A close-up of the final model after the details are added on the modified
surface.

136

Boundary curve

Handle particle
(initial position)

Side view

Handle particle
(�nal position)

Detail particles
(initial position)

Handle particle
is moved here

Detail particles
(after tiling)

Detail particles
(after project & relax)

(b) (c)

(d)

(a)

(f)

Tile details

Stretch details

(g)

(h) (i) (j)

(e)

Figure 6.11: (a) A hole is cut at at the center of the disc model. The boundary
particles are drawn in red. (b) A closer view of the center hole (model rotated 90◦

to provide a side view.) (c) Initial position of the detail particles. (d) The particles
are moved partway through the hole by projection and relaxation of springs to avoid
stretching. (e) The details are repeated over the rest of the surface. (f) Alternate
view of the detail particles shown in (e). (g) Final surface with repeated details. (h)
The details are stretched over the surface. (i) Alternate view of the detail particles
shown in (h). (j) Final surface with stretched details.

φ(x, y, z) =

((x

a

)2/n2

+
(y

b

)2/n2
)n2/n1

+
(z

c

)2/n1

− 1.0 (6.5)

φ(x, y) =
(x

a

)n

+
(y

b

)n

− 1.0 (6.6)

A set of particles is then sampled over this 2D grid, one particle per grid point,

each taking on the value of the implicit function sampled on the associated grid point

as an offset. The particles all have the same direction vector, which is also the normal

for the 2D plane on which they are sampled, (0.0, 0.0, 1.0) for this example. The next

step projects and moves the particles over the disc surface and adds these details on

the model as explained in Section 6.3. A hole is cut in the center using volumetric

CSG [Museth et al., 2002]. The detail particles within the ROI are stored prior to

the edit and projected over the newly created smooth surface in the center following

137

(b) (c)(a)

Figure 6.12: (a) The original model is scan converted from a triangle mesh, producing
a noisy level set model. (b) Model after 100 steps of curvature-based smoothing. (c)
Model after a single application of the binomial filter.

the CSG operation. Since the final edited ROI is significantly larger than the initial

ROI, the details only cover a small part of the final surface unless stretched or tiled.

We show the resulting surface from each method in Figure 6.11.

6.6 Discussion

A hierarchical, multiresolution level set model can be produced from a high res-

olution level set model by a successive set of smoothing and differencing operations.

Curvature-based smoothing can be used to remove high resolution details. However,

since the amount of smoothing is directly proportional to the surface curvature, it is

difficult to define a uniform system that will generate consistent smoothing results for

a wide variety of models. Additionally, numerical methods used to solve the level set

equation require small time steps in order to create stable solutions. This prevents

more than a small amount of detail to be smoothed every time step and requires

the level set evolution to be run several iterations before removing surface details be-

tween levels of the hierarchy. Instead, we use a volume filtering method as explained

in Section 6.1 that creates consistent smoothing results with high efficiency.

138

(a) (b) (c)

(d) (e) (f)

Figure 6.13: (a) Filtered model at level N (b) Reconstructed model at level N ,
created by adding level N details to the filtered volume shown in (a) . (c) Original
high resolution model at level N . (d) A closer view of the head belonging to the
reconstructed model. (e) A closer view of the head belonging to the original model.
(f) Distance between the reconstructed and the original model is color coded, red
representing the maximum and green representing the minimum distances.

139

Figure 6.12 shows a comparison of two surfaces obtained through curvature-based

smoothing and binomial filtering applied to a level set model of an armchair that

is scan converted from a noisy mesh model. In an attempt to remove the noise,

we initially used curvature-based smoothing. The model after 100 iterations of the

level set evolution is shown in Figure 6.12(b). Figure 6.12(c) is created via a single

application of the 3×3×3 binomial filter. The amount of smoothing obtained via 100

steps of curvature-based smoothing is comparable to a single application of binomial

filtering. Even though both methods can be utilized to create a hierarchical model,

the binomial filter removes surface artifacts, and consequently geometric details, more

efficiently and consistently than curvature-based smoothing.

We also evaluated the accuracy of the detail preserving techniques described in

Section 6.3. Figure 6.13 shows an example of applying filtering and reconstruction

to the armadillo model. The high resolution surface details are removed using the

binomial filter and added back using the methods explained in Sections 6.3.2 through

6.3.5. We can measure the reconstruction error by calculating the Euclidean distance

between the original and the reconstructed surfaces at the reconstructed surface’s

volume grid points. The distance at a grid point is computed as the difference between

the distance field value of the original and the reconstructed surfaces at that point.

The minimum, maximum and average distances for the armadillo reconstruction are

4.09×10−8, 1.48 and 0.07 voxels respectively and color coded in Figure 6.13(f), green

representing minimum and red representing the maximum distances. 99% of the

reconstructed surface was less than 0.5 voxels away from the original surface and only

0.025% of the reconstructed surface was more than 1 voxel away from the original

surface. Figure 6.14 shows the reconstruction error in terms of percentage of overall

voxels (y-axis) with the margin of error shown along the x-axis. The chart is only

drawn up to 0.5 voxels on the x-axis. Less than 1% of the surface voxels have an error

140

0 0.5

2

4

6

8

10

12

14

18

16

20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Figure 6.14: The reconstruction error is measured as the distance in voxels between
the reconstructed and the original surface voxels. The error is shown up to 0.5 voxels.
Less than 1% of the surface voxels have an error of more than 0.5 voxels.

of more than 0.5 voxels.

Multiresolution techniques enable interactive frame rates during large modifica-

tions made to high resolution models, as well as level-of-detail surface manipulations.

The armadillo model shown in Figure 6.5 is edited twice, once using only the high

resolution model (Figure 6.5(a)) and the advection method and once using the mul-

tiresolution editing system and the spring method. Table 6.1 shows run times for

each step of both approaches on a 3.2 GHz Intel Xeon CPU.

In the first approach, the model was edited at 5123, advecting the particles along

with the surface. The model can be edited at this resolution, however, at a very low

frame rate (1.9 fps). In order to provide a comparison, Table 6.1 also shows the frame

rate of editing this model without advecting the detail particles with the surface (5

141

Method Steps Run times Total overhead

Advection Method
Editing 5123 model 5 fps

12 secEditing & Advecting particles 1.9 fps
Adding Details 12 sec

Spring Method

Editing 2563 model 37 fps

51.1 sec
Upsampling 6.8 sec
Projecting particles 31.6 sec
Resampling particles 0.7 sec
Adding Details 12 sec

Table 6.1: A comparison of the advection and the spring methods.

fps).

In the second approach, the model is edited at 2563 resolution. The particles are

not advected with the surface, but are projected after the edit is done. The ROI is

then upsampled and blended in with the 5123 model. The details at 5123 are projected

onto the modified (smooth) surface and finally added back to the create the detailed

surface. Even though the extra calculations to upsample the narrow-band and project

the particles onto the smooth surface using the spring method add 40 seconds to the

overall time to create the final result, the actual user interaction of the editing can be

done approximately 20 times faster using the multiresolution framework. The final

step that adds the details using the speed function explained in Section 6.3.3 is the

same for both approaches and takes 12 seconds for this particular example.

142

7. Conclusions

There are several applications in computer graphics and medical science that use

volumetric models. Usually, these models are converted into explicit surface rep-

resentations before they can be utilized by such applications. The conversion and

reconstruction algorithms are cumbersome, and the raw data may have a significant

amount of noise/errors, requiring user manipulation and clean up prior to further pro-

cessing and analysis. Furthermore, drastic deformations of complex explicit models

produce a series of problems such as cracks and rough patches where surfaces meet.

They require re-meshing in the areas that are thinned or expanded too much. The

topological errors caused by self intersections are nontrivial to correct. To the best

of our knowledge there is currently a paucity of adequate volumetric editing tools

capable of high resolution and high level surface manipulations. To address these

shortcomings we have developed techniques and algorithms for interactive freeform

editing of large-scale, multiresolution level set models. We believe that creating tech-

niques for directly editing volumetric, implicit models is the most logical and advanta-

geous approach to modifying these types of models, rather than relying on conversion

techniques and explicit surface editing capabilities.

Level set models combine a low-level volumetric representation, the mathematics

of deformable implicit surfaces, and robust numerical techniques to produce a pow-

erful approach to geometric modeling. They are guaranteed to define simple (non-

self-intersecting) and closed surfaces, and they easily change topological genus.These

models provide the advantages of volumetric models, e.g. supporting straightforward

solid modeling operations and calculations, while simultaneously offering a surface

modeling paradigm. The benefits offered by these features provide the motivation

for utilizing level set models to process and manipulate volumetric, implicit surfaces,

143

and make them unique for applications utilizing complex surfaces with dynamically

changing topology, such as “amorphous” characters interacting with other solid or

soft objects, cracking or exploding surfaces, fluid and smoke simulations, as well as

representing surfaces acquired from medical scan data. Even though they have found

some use in major movie productions and some medical applications such as volume

segmentation, level set models are not highly utilized in either the special effects in-

dustry or medical science. The space complexity of the volumetric representation and

the time complexity of the algorithms needed for modifying implicit surfaces prevent

level set models from being utilized in interactive modeling systems. A current state-

of-the-art system should support models containing one billion voxels and provide

25-30 frames-per-second (fps) evaluation rates at these resolutions. Even the most

advanced data structures and algorithms developed for level set models are not able to

meet both of these requirements at the same time. Our work closes the gap between

level set methods and interactive modeling applications by providing new techniques

and algorithms that make it possible to incorporate these models in state-of-the-art

modeling frameworks.

We have created a comprehensive set of computational tools to interactively mod-

ify large scale level set surfaces within a multiresolution framework. These tools

provide benefits for a number of fields including geometric modeling and CAD, and

advance the field of level set modeling in general. The advances presented in this thesis

will find immediate use in two disparate application areas, special effects/animation

and medical/biological imaging. In special effects, our techniques can facilitate con-

trolling and shaping morphing sequences, which are used to perform animations of

amorphous characters. These techniques can also be utilized in medical imaging for

guiding and directing the automated volume segmentation process.

A set of interactive, free-form editing operators for direct manipulation of level set

144

models that supports the creation and removal of surface detail have been devised.

The mathematics, i.e. level set speed functions, and algorithms needed to implement

numerous level set modeling capabilities have been developed. The first component

of these capabilities allows the user to identify the Region-of-Influence (ROI) on the

surface to be modified, and specify geometric handles, i.e. a point or a curve within

the ROI, that are used to control the free-form surface edits. The second component

incorporates this user input into the level set PDE, which is then used to evolve the

surface to create desired surface modifications. The editing operators include pulling

the level set surface by a handle with the surface changes occurring symmetrically

around the handle or within the ROI, surface offsetting and carving, deformations

towards a profile curve and localized smoothing. Additional sketch-based level set

editing operators have been developed within the system.

The editing operators are implemented with specialized speed functions, which

are incorporated into the level set partial differential equation (PDE). The PDE is

then evolved to produce the desired model modification. The operators have been

combined with an OpenGL interface and the VISPACK level set library to create

a preliminary interactive level set modeling system. VISPACK’s narrow-band data

structures have been extended to localize all computations and updates to optimize

running time and provide interactive performance. A variety of level set models are

presented to demonstrate the effectiveness of the editing operators.

We also described an approach for localized editing of Catmull-Rom (C-R) splines.

We prefer to use C-R splines for their ability to interpolate every control point, which

is important for accurately translating user input into a mathematical representation

in our sketch-based surface editing system. Localized editing gives the user more

control over the scale of editing to be performed, and the range of influence of a

single editing operation. An active window is placed around the selected control

145

point to limit the modifications to a sub-region of the curve. The user can change

the size of the window and the control point resolution within the window any time

during editing. The offset of the control points within the active window can be

described through a set of schemes that interpolates the displacement of a selected

control point. We discussed two alternative ideas, interpolating the displacement

directly, and interpolating the displacement vector with the normal to the curve at

the boundaries of the active window. These schemes provide a versatile, expressive

and powerful localized curve editing capability for Catmull-Rom splines.

We have described data structures that enable interactive editing of large-scale

level set surface models. The new approach utilizes spatial hashing to represent a

narrow-band of voxels around the level set interface, as well as a k-d tree to hold the

model’s display points that lie on the surface itself. This sparse representation of vox-

els and surface points lets us create and modify high resolution level set models with

modest memory requirements, while supporting fast data access/modifications and

interactive graphics updates. The data structures also support out-of-the-box editing,

i.e. no bounding box limits the surface editing region. Through a number of experi-

ments we have shown that the data structures have the properties necessary to meet

our performance requirements. They allow us to interactively edit (at frame rates

typically over 25 fps) high resolution level set models (with voxel counts equivalent to

a 15003 volume dataset). The spatial hash function of Teschner et al. [2003] has been

shown to satisfactorily distribute surface locations in the hash table, thus minimizing

collisions and maximizing access/modification times. Storing display points in a k-d

tree supports the localization of graphics processing, which minimizes the amount of

data that needs to be transferred from the application to the GPU during editing of

small regions of a high resolution model. Together, these data structures provide a

new capability for the interactive modification of large-scale level set models.

146

Level set models can lose details during surface modifications in under-resolved

regions, as well as because interface movements in the normal direction inherently

smooth out high-frequency surface structures. We have developed a framework that

identifies surface details prior to editing and introduces them back afterwards. Ad-

ditionally, we have developed techniques for creating hierarchical level set models

that allow a user to manipulate/edit a level set surface at different geometric scales

and levels of detail. Combining these two features provides a detail-preserving level

set editing capability that may be used for multi-resolution modeling and texture

transfer.

The contributions of this work include:

1. Techniques and algorithms that implement novel level set modeling capabilities

2. Data structures for representing large scale level set models while providing fast

random data access to facilitate interactive editing

3. Detail preserving techniques for level set surface editing

4. Multiresolution techniques for level-of-detail editing of level set surfaces

5. Geometric texture transfer using level set surfaces

6. Schemes that provide a versatile, expressive and powerful localized curve editing

capability for Catmull-Rom splines

This research will enable interactive control and guidance of dynamic level set

processes such as volume segmentation and morphing. Future work may also create

techniques to facilitate mid-sequence manipulations in level set simulations such as

fluid flow. An important feature of modifying such simulations is the need to maintain

the continuity of the models between simulation time steps.

147

8. Future Work

The surface modifications described in this thesis are different from the deforma-

tions made to analytical implicit surfaces using a skeleton structure. These types of

deformations, e.g. bending, twisting and tapering, can also be performed using level

set models. A skeleton may also be used to animate such models. Future work could

develop techniques to create efficient skeleton structures that deform and animate

level set models.

The detail preserving scheme presented in this work represents high resolution

surface details as height fields. The type of surface detail a height field can represent

is limited. However, given the type of motion the level set interface undergoes during

surface editing as explained in this thesis, i.e. using motion in the normal direction,

details that are more complicated than a height field cannot be added. If more

complicated details can be extracted from the higher resolution model, the advection

equation should be used to add these details back onto the level set surface.

Multithreading may be utilized to more efficiently implement the techniques and

algorithms described in this dissertation. However, it is not trivial to implement a

distributed application using dynamically changing data. If the surface edit happens

in the boundary of several adjacent regions on the surface, i.e. a topology change

occurs, some or all the regions have to change the underlying data that is influenced

or influence other regions. This would create a deadlock situation caused by the

cyclic dependencies among individual neighboring forked processes. This is in fact

quite common in distributed algorithms especially when they share/modify a common

data structure, and can be resolved by using a parallel model such as exclusive read

exclusive write (EREW). To prevent such cyclic dependencies, a master processor

would need to maintain the data and coordinate the individual processes. This model

148

adds to the overhead and the protocol is not trivial to implement. Instead, future work

may include creating GPU-friendly algorithms in order to achieve better modeling

performance.

We realize that these techniques should be incorporated into current state-of-

the-art 3D modeling systems such as Maya or Houdini to better benefit the special

effects and animation communities. A possible way that they could be included into

a commercial system is by including these techniques into OpenVDB[Miller et al.,

2012], an open source C++ library comprised of a hierarchical data structure and

a suite of tools for the efficient manipulation of sparse and time-varying volumetric

data.

149

Bibliography

D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating interfaces.

Journal of Computational Physics, 118(2):269–277, 1995.

A. Alexe, V. Gaildrat, and L. Barthe. Interactive modeling from sketches using

spherical implicit functions. In Proc. AFRIGRAPH ’04, pages 25–34, 2004.

V. Andersen, M. Desbrun, J. A. Bærentzen, and H. Aanæs. Height and tilt geometric

texture. In Proc. International Symposium on Advances in Visual Computing: Part

I, pages 656–667, 2009.

L.-E. Andersson and N. F. Stewart. Introduction to the Mathematics of Subdivision

Surfaces. SIAM, 2010.

A. Angelidis and M.-P. Cani. Adaptive implicit modeling using subdivision curves

and surfaces as skeletons. In Proc. ACM Symposium on Solid Modeling and Appli-

cations, pages 45–52, 2002.

A. Angelidis, P. Jepp, and M.-P. Cani. Implicit modeling with skeleton curves: Con-

trolled blending in contact situations. In Proc. International Conference on Shape

Modeling and Applications, pages 137–144, 2002.

A. Angelidis, G. Wyvill, and M.-P. Cani. Sweepers: Swept user-defined tools for

modeling by deformation. In Proc. International Conference on Shape Modeling

and Applications, pages 63–73, 2004.

150

A. Angelidis, M.-P. Cani, G. Wyvill, and S. King. Swirling-sweepers: constant-volume

modeling. Graphical Models, 68(4):324–332, 2006.

H. Arata, Y. Takai, N. Takai, and T. Yamamoto. Free-form shape modeling by

3D cellular automata. In Proc. International Conference on Shape Modeling and

Applications, pages 242–247, 1999.

B. Araujo and J. Jorge. Blobmaker: Free-form modelling with variational implicit

surfaces. In Proc. Encontro Portugues de Computacao Graca, pages 17–26, 2003.

J. Bærentzen and N. Christensen. Volume sculpting using the level-set method. In

Proc. International Conference on Shape Modeling and Applications, pages 175–

182, 2002.

A. Barr. Global and local deformations of solid primitives. In Proc. ACM SIGGRAPH,

pages 21–30, 1984.

A. Barr. Superquadrics and angle-preserving transformations. IEEE Computer

Graphics and Applications, 1(1):11–23, 1981.

P. Bhat, S. Ingram, and G. Turk. Geometric texture synthesis by example. In Proc.

Eurographics/ACM ACM SIGGRAPH Symposium on Geometry Processing, pages

41–44, 2004.

R. Blanch, E. Ferley, M.-P. Cani, and J.-D. Gascuel. Non-realistic haptic feedback

for virtual sculpture. Technical Report RR-5090, INRIA, 2004.

J. Bloomenthal. An implicit surface polygonizer. In Graphics Gems IV, pages 324–

349. Academic Press, 1994.

J. Bloomenthal and B. Wyvill. Interactive techniques for implicit modeling. ACM

SIGGRAPH Computer Graphics, 24(2):109–116, 1990.

151

J. Bloomenthal and B. Wyvill, editors. Introduction to Implicit Surfaces. Morgan

Kaufmann Publishers Inc., 1997.

M. Botsch, M. Spernat, and L. Kobbelt. Phong splatting. In Proc. Symposium on

Point-Based Graphics, pages 25–32, 2004.

M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality surface splatting

on today’s GPUs. In Proceedings Eurographics/IEEE VGTC Symposium on Point-

Based Graphics, pages 17–141, 2005.

D. E. Breen and R. T. Whitaker. A level set approach for the metamorphosis of

solid models. IEEE Transactions on Visualization and Computer Graphics, 7(2):

173–192, 2001.

D. E. Breen, S. Mauch, R. T. Whitaker, and J. Mao. 3D metamorphosis between

different types of geometric models. Computer Graphics Forum, 20(3):36–48, 2001.

D. E. Breen, R. T. Whitaker, K. Museth, and L. Zhukov. Level set segmentation

of biological volume datasets. In Handbook of Medical Image Analysis, Volume I:

Segmentation Part A, pages 415–478. Kluwer, 2005.

A. Brodersen, K. Museth, S. Porumbescu, and B. Budge. Geometric texturing using

level sets. IEEE Transactions on Visualization and Computer Graphics, 14(2):

277–288, 2008.

M.-P. Cani and M. Desbrun. Animation of deformable models using implicit surfaces.

IEEE Transactions on Visualization and Computer Graphics, 3(1):39–50, 1997.

J. E. Cates, A. E. Lefohn, and R. T. Whitaker. Gist: An interactive, GPU-based level

set segmentation tool for 3D medical images. Journal on Medical Image Analysis,

8(3):217–231, 2004.

152

E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topo-

logical meshes. Computer-Aided Design, 10(6):350–355, 1978.

E. Catmull and R. Rom. A class of local interpolating splines. In Proc. Computer

Aided Geometric Design, pages 317–326, 1974.

W. Chen, L. Ren, M. Zwicker, and H. Pfister. Hardware-accelerated adaptive EWA

volume splatting. In Proc. Conference on Visualization, pages 67–74, 2004.

J. J. Cherlin, F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based modeling with

few strokes. In Proc. Spring Conference on Computer Graphics, pages 137–145,

2005.

J. H. Clark. Hierarchical geometric models for visible surface algorithms. Communi-

cations of the ACM, 19(10):547–554, 1976.

L. Coconu and H.-C. Hege. Hardware-oriented point-based rendering of complex

scenes. In Proc. Eurographics Workshop on Rendering, pages 43–52, 2002.

E. Cohen, R. F. Riesenfeld, and G. Elber. Geometric Modeling with Splines. A. K.

Peters, 2001.

M. Desbrun and M.-P. Cani. Animating soft substances with implicit surfaces. In

Proc. ACM SIGGRAPH, pages 287–290, 1995.

M. Desbrun and M.-P. Cani. Active implicit surface for animation. In Proc. Graphics

Interface, pages 143–150, 1998.

D. Doo and M. Sabin. Behavior of recursive division surfaces near extraordinary

points. Computer-Aided Design, 10(6):356–360, 1978.

153

M. Droske, B. Meyer, M. Rumpf, and C. Schaller. An adaptive level set method for

medical image segmentation. In Proc. International Conference on Information

Processing in Medical Imaging, pages 416–422, 2001.

H. Du. Interactive shape design using volumetric implicit PDEs. In Proc. ACM

Symposium on Solid Modeling and Applications, pages 235–246, 2003.

H. Du and H. Qin. A shape design system using volumetric implicit PDEs. Computer

Aided Design, 36(11):1101–1116, 2004.

H. Du and H. Qin. Dynamic PDE-based surface design using geometric and physical

constraints. Graphical Models, 67(1):43–71, 2005.

H. Du and H. Qin. Free-form geometric modeling by integrating parametric and

implicit PDEs. IEEE Transactions on Visualization and Computer Graphics, 13

(3):549–561, 2007.

M. Eitz and G. Lixu. Hierarchical spatial hashing for real-time collision detection. In

Proc. International Conference on Shape Modeling and Applications, pages 61–70,

2007.

G. Elber. Multiresolution curve editing with linear constraints. In Proc. Symposium

on Solid Modeling and Applications, pages 109–119, 2001.

G. Elber. Geometric texture modeling. IEEE Computer Graphics and Applications.,

25(4):66–76, 2005.

G. Elber and C. Gotsman. Multiresolution control for nonuniform B-spline curve edit-

ing. In Proc. Pacific Graphics Conference on Computer Graphics and Applications,

pages 267–278, 1995.

154

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method

for improved interface capturing. Journal of Computational Physics, 183:83–116,

2002a.

D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water

surfaces. ACM Transactions on Graphics, 21(3):736–744, 2002b.

D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate semi-lagrangian particle

level set method. Computers and Structures, 83:479–490, 2005.

G. Farin. Curves and Surfaces for CAGD: A Practical Guide. Morgan-Kaufmann,

5th edition, 2002.

E. Ferley, M.-P. Cani, and J.-D. Gascuel. Practical volumetric sculpting. The Visual

Computer, 16(8):469–480, 2000.

E. Ferley, M.-P. Cani, and J.-D. Gascuel. Resolution adaptive volume sculpting.

Graphical Models, 63(6):459–478, 2001.

A. Finkelstein and D. Salesin. Multiresolution curves. In Proc. ACM SIGGRAPH,

pages 261–268, 1994.

S. F. Frisken and R. N. Perry. Designing with distance fields. In ACM SIGGRAPH

Course #2 Notes, pages 60–66, 2006.

S. F. Frisken, R. N. Perry, A. P. Rockwood, and T.R. Jones. Adaptively sampled

distance fields: A general representation of shape for computer graphics. In Proc.

ACM SIGGRAPH, pages 249–254, 2000.

T. A. Galyean and J. F. Hughes. Sculpting: An interactive volumetric modeling

technique. In Proc. ACM SIGGRAPH, pages 267–274, 1991.

155

M. Gross and H. Pfister. Point-Based Graphics. Morgan Kaufmann, San Francisco,

2007.

X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. ACM Transactions on

Graphics, 21(3):355–361, 2002.

I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for

meshes. In Proc. ACM SIGGRAPH, pages 325–334, 1999.

I. Guskov, K. Vidimče, W. Sweldens, and P. Schröder. Normal meshes. In Proc. ACM

SIGGRAPH, pages 95–102, 2000.

I. Guskov, A. Khodakovsky, P. Schröder, and W. Sweldens. Hybrid meshes: Mul-

tiresolution using regular and irregular refinement. In Proc. ACM Symposium on

Computational Geometry, pages 264–272, 2002.

A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order

accurate essentially non-oscillatory schemes, III. Journal of Computational Physics,

71(2):231–303, 1987.

E. J. Hastings, J. Mesit, and R. K. Guha. Optimization of large-scale, real-time

simulations by spatial hashing. In Proc. Summer Computer Simulation Conference,

pages 9 – 17, 2005.

S. Hornus, A. Angelidis, and M.-P. Cani. Implicit modelling using subdivision curves.

The Visual Computer, 19(2-3):94–104, 2003.

B. Houston, M. Wiebe, and C. Batty. RLE sparse level sets. In ACM SIGGRAPH

Technical Sketches, page 137, 2004.

B. Houston, M. Nielsen, C. Batty, O. Nilsson, and K. Museth. Hierarchical RLE level

156

set: A compact and versatile deformable surface representation. ACM Transactions

on Graphics, 25(1):151–175, 2006.

J. Hua and H. Qin. Scalar-field guided adaptive shape deformation and animation.

The Visual Computer, 20(1):47–66, 2004.

T. Igarashi and J. F. Hughes. Smooth meshes for sketch-based freeform modeling. In

Proc. ACM Symposium on Interactive 3D Graphics, pages 139–142, 2003.

T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface for 3-D

freeform design. In Proc. ACM SIGGRAPH, pages 409–416, 1999.

M. W. Jones, J. A. Bærentzen, and M. Sramek. 3D distance fields: A survey of

techniques and applications. IEEE Transactions on Visualization and Computer

Graphics, 12(4):581–599, 2006.

O. Karpenko, J. Hughes, and R. Raskar. Free-form sketching with variational implicit

surfaces. Computer Graphics Forum, 21(3):585–594, 2002.

A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. Computer, 26(7):51–64,

1993.

A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compression.

In Proc. ACM SIGGRAPH, pages 271–278, 2000.

L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution

modeling on arbitrary meshes. In Proc. ACM SIGGRAPH, pages 105–114, 1998.

Y.-K. Lai, S.-M. Hu, D. X. Gu, and R. R. Martin. Geometric texture synthesis and

transfer via geometry images. In Proc. ACM Symposium on Solid and Physical

Modeling, pages 15–26, 2005.

157

D. Laney, M. Bertram, M. Duchaineau, and N. Max. Multiresolution distance volumes

for progressive surface compression. In Proc. International Symposium on 3D Data

Processing Visualization and Transmission, pages 470–480, 2002.

Y. N. Law, H. K. Lee, and A. M. Yip. A multiresolution stochastic level set method

for mumford-shah image segmentation. IEEE Transactions on Image Processing,

17(12):2289–2300, 2008.

J. Lawrence and T. Funkhouser. A painting interface for interactive surface deforma-

tions. Graphical Models, 66(6):418–438, 2004.

S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on Graphics,

25(3):579–588, 2006.

A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker. Interactive deformation

and visualization of level set surfaces using graphics hardware. In Proc. IEEE

Visualization, pages 75–82, 2003.

A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker. A streaming narrow-

band algorithm: Interactive computation and visualization of level sets. IEEE

Transactions on Visualization and Computer Graphics, 10:422–433, 2004.

M. C. Leu and W. Zhang. Virtual sculpting with surface smoothing based on level

set method. CIRP Annals - Manufacturing Technology, 57:167–170, 2008.

X. Li, L. Gu, S. Zhang, J. Zhang, G. Zheng, P. Huang, and J. Xu. Hierarchical

spatial hashing-based collision detection and hybrid collision response in a hap-

tic surgery simulator. International Journal of Medical Robotics and Computer

Assisted Surgery, 4(1):77–86, 2008.

X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes.

Journal of Computational Physics, 115(1):200–212, 1994.

158

C. Loop. Smooth subdivision surfaces based on triangles. M.S. in Mathematics thesis,

University of Utah, 1987.

W. E. Lorensen and H. E. Cline. Marching Cubes: A high resolution 3D surface

construction algorithm. In Proc. ACM SIGGRAPH, pages 163–169, 1987.

F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an octree

data structure. ACM Transactions on Graphics, 23(3):457–462, 2004.

K. McDonnell, H. Qin, and R. Wlodarczyk. Virtual clay: A real-time sculpting system

with haptic toolkits. In Proc. Symposium on Interactive 3D Graphics, pages 179–

190, 2001.

K. T. McDonnell and H. Qin. PB-FFD: A point-based technique for free-form defor-

mation. Journal of Graphics Tools, 12(3):25–41, 2007.

D. Meagher. Geometric modeling using octree encoding. Computer Graphics and

Image Processing, 19(2):129–147, 1982.

B. Miller, K. Museth, D. Penney, and N. B. Zafar. Cloud modeling and rendering for

Puss In Boots, ACM SIGGRAPH Talk, 2012.

C. Min. Local level set method in high dimension and codimension. Journal of

Computational Physics, 200(1):368–382, 2004.

Y. Mori and T. Igarashi. Plushie: an interactive design system for plush toys. ACM

Transactions on Graphics, 26(3):45, 2007.

P. Mullen, A. McKenzie, Y. Tong, and M. Desbrun. A variational approach to Eule-

rian geometry processing. ACM Transactions on Graphics, 26(3):66, 2007.

K. Museth, D. E. Breen, R. T. Whitaker, and A. Barr. Level set surface editing

operators. ACM Transactions on Graphics, 21(3):330–338, 2002.

159

K. Museth, D. E. Breen, R. T. Whitaker, S. Mauch, and D. Johnson. Algorithms for

interactive editing of level set models. Computer Graphics Forum, 24(4):821–841,

2005.

A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Fibermesh: designing freeform

surfaces with 3D curves. ACM Transactions on Graphics, 26(3):41, 2007.

M. Nielsen and K. Museth. Dynamic tubular grid: An efficient data structure and

algorithms for high resolution level sets. Journal of Scientific Computing, 26(3):

261–299, 2006.

M. Nielsen, O. Nilsson, A. Söderström, and K. Museth. Out-of-core and compressed

level set simulations. ACM Transactions on Graphics, 26(4), 2007.

J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and design choices.

In Algorithmic Foundations of Geographic Information Systems, volume 1340 of

Lecture Notes in Computer Science, pages 153–197. Springer, Berlin, 1997.

S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer,

Berlin, 2002.

S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algo-

rithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,

79:12–49, 1988.

S. Owada, F. Nielsen, K. Nakazawa, and T. Igarashi. A sketching interface for mod-

eling the internal structures of 3D shapes. In Proc. International Symposium on

Smart Graphics, pages 49–57, 2003.

D. Peng, B. Merriman, S. Osher, H.-K. Zhao, and M. Kang. A PDE-based fast local

level set method. Journal of Computational Physics, 155:410–438, 1999.

160

K. L. Perng, W. T. Wang, M. Flanagan, and M. Ouhyoung. A real-time 3D virtual

sculpting tool based on modified marching cubes. International Conference on

Artificial Reality and Tele-Existence, 11:64–72, 2001.

R. N. Perry and S. F. Frisken. Kizamu: A system for sculpting digital characters. In

Proc. ACM SIGGRAPH, pages 47–56, 2001.

J. Peters and U. Reif. Subdivision Surfaces. Springer, 2008.

S. D. Porumbescu, B. Budge, L. Feng, and K. I. Joy. Shell maps. ACM Transactions

on Graphics, 24(3):626–633, 2005.

L. Ren, H. Pfister, and M. Zwicker. Object space EWA surface splatting: A hardware

accelerated approach to high quality point rendering. Computer Graphics Forum,

21(3):461–470, 2002.

C. Reynolds. Big fast crowds on PS3. In Proc. ACM SIGGRAPH Symposium on

Videogames, pages 113–121, 2006.

M. Rumpf and R. Strzodka. Level set segmentation in graphics hardware. In Proc.

IEEE International Conference on Image Processing, pages 1103–1106, 2001.

S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution point rendering system for

large meshes. In Proc. ACM SIGGRAPH, pages 343–352, 2000.

M. Sainz and R. Pajarola. Point-based rendering techniques. Computers & Graphics,

28(6):869–879, 2004.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

1990.

A. Sarti and S. Tubaro. Multiresolution implicit object modeling. In Proc. Vision

Modeling and Visualization Conference, pages 93–100, 2001.

161

R. Schmidt and K. Singh. Sketch-based procedural surface modeling and compositing

using surface trees. Computer Graphics Forum, 27(2):321–330, 2008.

R. Schmidt and B. Wyvill. Generalized sweep templates for implicit modeling. In

Proc. International Conference on Computer Graphics and Interactive Techniques

in Australasia and South East Asia, pages 187–196, 2005.

R. Schmidt, B. Wyvill, and E. Galin. Interactive implicit modeling with hierarchical

spatial caching. In Proc. International Conference on Shape Modeling and Appli-

cations, pages 104–113, 2005a.

R. Schmidt, B. Wyvill, M. Sousa, and J. A. Jorge. Shapeshop: Sketch-based solid

modeling with blobtrees. In Proc. Eurographics Workshop on Sketch-Based Inter-

faces and Modeling, pages 53–62, 2005b.

P. Schröder. Subdivision as a fundamental building block of digital geometry pro-

cessing algorithms. Journal of Computational and Applied Mathematics, 149(1):

207–219, 2002.

C. A. Schroeder, D. E. Breen, C. D. Cera, and W. C. Regli. Stochastic microgeometry

for displacement mapping. In Proc. International Conference on Shape Modeling

and Applications, pages 166–175, 2005.

T. Sederberg and S. Parry. Free-form deformation of solid geometric models. In Proc.

ACM SIGGRAPH, pages 151–160, 1986.

J. A. Sethian. A fast marching level set method for monotonically advancing fronts.

In Proc. National Academy of Sciences, pages 1591–1595, 1995.

J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University

Press, 2nd edition, 1999.

162

K. Shoemake. Animating rotation with quaternion curves. In Proc. ACM SIG-

GRAPH, pages 245–254, 1985.

C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes. Journal of Computational Physics, 77(2):439–471, 1988.

K. Singh and E. Fiume. Wires: a geometric deformation technique. In Proc. ACM

SIGGRAPH, pages 405–414, 1998.

G. G. Slabaugh and R. W. Schafer. Multi-resolution space carving using level set

methods. In Proc. IEEE International Conference on Image Processing, pages

545–548, 2002.

J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary param-

eter values. In Proc. ACM SIGGRAPH, pages 395–404, 1998.

M. Stamminger and G. Drettakis. Interactive sampling and rendering for complex and

procedural geometry. In Proc. Eurographics Workshop on Rendering Techniques,

pages 151–162, 2001.

J. Strain. Tree methods for moving interfaces. Journal of Computational Physics,

151(2):616–648, 1999.

M. Sugihara, E. de Groot, B. Wyvill, and R. Schmidt. A sketch-based method to

control deformation in a skeletal implicit surface modeler. In Proc. Eurographics

Workshop on Sketch-Based Interfaces and Modeling, pages 65–72, 2008.

C. L. Tai, H. Zhang, and J. C.-K. Fong. Prototype modeling from sketched silhouettes

based on convolution surfaces. Computer Graphics Forum, 23(1):71–83, 2004.

T. Tasdizen, R. T. Whitaker, P. Burchard, and S. Osher. Geometric surface processing

via normal maps. ACM Transactions on Graphics, 22(4):1012–1033, 2003.

163

M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross. Optimized

spatial hashing for collision detection of deformable objects. In Proc. Vision, Mod-

eling and Visualization, pages 47–54, 2003.

J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Transac-

tions on Automatic Control, 40(9):1528–1538, 1995.

G. Turk and J. O’Brien. Modeling with implicit surfaces that interpolate. ACM

Transactions on Graphics, 21(4):855–873, 2002.

L. Velho, J. Gomes, and L. H. de Figueiredo. Implicit Objects in Computer Graphics.

Springer, 2002.

W. von Funck, H. Theisel, and H.-P. Seidel. Vector field based shape deformations.

ACM Transactions on Graphics, 25(3):1118–1125, 2006.

W. von Funck, H. Theisel, and H.-P. Seidel. Explicit control of vector field based shape

deformations. In Proc. Pacific Conference on Computer Graphics and Applications,

pages 291–300, 2007.

S. W. Wang and A. E. Kaufman. Volume-sampled 3D modeling. IEEE Computer

Graphics and Applications, 14(5):26–32, 1994.

S. W. Wang and A. E. Kaufman. Volume sculpting. In Proc. Symposium on Interac-

tive 3D Graphics, pages 151–156, 1995.

J. Warren and H. Weimer. Subdivision Methods for Geometric Design: A Constructive

Approach. Morgan Kaufmann, 2001.

R. T. Whitaker. VISPACK. Technical Report UUCS 08-0011, School of Computing,

University of Utah, 2008.

164

R. T. Whitaker. A level-set approach to 3D reconstruction from range data. Inter-

national Journal of Computer Vision, 29(3):203–231, 1998.

M. Wiebe and B. Houston. The tar monster: Creating a character with fluid simula-

tion. In ACM SIGGRAPH Technical Sketches, 2004.

B. Wyvill and G. Wyvill. Field functions for implicit surfaces. The Visual Computer,

5(1&2):75–82, 1989.

B. Wyvill, C. McPheeters, and G. Wyvill. Animating soft objects. The Visual

Computer, 2(4):235–242, 1986a.

B. Wyvill, E. Galin, and A. Guy. Extending the CSG tree. Warping, blending and

boolean operations in an implicit surface modeling system. Computer Graphics

Forum, 18(2):149–158, 1999.

G. Wyvill, C. McPheeters, and B. Wyvill. Data structures for soft objects. The

Visual Computer, 2(4):227–234, 1986b.

T. Yoo. Insight into Images: Principles and Practice for Segmentation, Registration,

and Image Analysis. AK Peters, 2004.

A. Youssef. Image downsampling and upsampling methods. In Proc. International

Conference on Imaging, Science, Systems, and Technology, pages 132–138, 1999.

R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. Sketch: an interface for sketching

3D scenes. In Proc. ACM SIGGRAPH, pages 163–170, 1996.

J. J. Zhang and Y. Lihua. Surface representation using second, fourth and mixed

order partial differential equations. In Proc. International Conference on Shape

Modeling and Applications, pages 250–256, 2001.

165

K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and H.-Y. Shum.

Mesh quilting for geometric texture synthesis. In Proc. ACM SIGGRAPH, pages

690–697, 2006.

J. Zimmermann, A. Nealen, and M. Alexa. Silsketch: automated sketch-based editing

of surface meshes. In Proc. Eurographics Workshop on Sketch-based Interfaces and

Modeling, pages 23–30, 2007.

D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh editing. In

Proc. ACM SIGGRAPH, pages 259–268, 1997.

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In Proc. ACM

SIGGRAPH, pages 371–378, 2001.

