
Interactive Free-Form Level-Set Surface-Editing Operators

Abstract

We present a set of interactive, free-form editing operators for direct manipulation of level-set models. The
mathematics, algorithms and techniques needed to implement numerous level-set modeling capabilities have
been developed. The operators have been combined with an OpenGL interface and the VISPACK level-set
library to create a preliminary interactive level-set modeling system. VISPACK’s narrow-band data structures
have been extended to localize all computations and updates to optimize running time. We describe the level-
set speed functions that implement the surface-editing operators. A level-set surface can be edited through
a click-sketch-and-pull interface that allows a user to identify a point or Region-of-Influence (ROI) to be
modified on the surface. The user may then pull a point or a curve within the ROI to produce a free-form
surface manipulation. Additional operators include surface detailing, carving and smoothing, as well as a
sketch-based technique that pulls the surface toward a profile curve.

Key words: implicit modeling, level-set modeling, volume modeling, surface editing, free-form
deformations

1. Introduction

Surface models, e.g. triangles meshes, NURBS
and subdivision surfaces, have been the most
widespread modeling representation used within
computer graphics and visualization for several
decades. In these models topologically 2D surfaces
existing in 3D Cartesian space have been explic-
itly represented with 2D structures, such as triangles
and spline patches. While these have been the pre-
dominant models for quite some time, implicit mod-
els, which represent surfaces as iso-surfaces of a 3D
scalar field, are becoming more prevalent and impor-
tant to such disparate disciplines as model processing
in medicine/biology and special effects for movies.

As imaging technology continues to be rapidly de-
ployed and utilized in medicine and science, an
increasing number of volume datasets are gener-
ated, producing an overwhelming flood of raw vol-
ume data that must be processed, viewed and ana-
lyzed. Usually these datasets contain 3D surfaces
that are of interest to physicians and scientists. In
computer graphics many surface reconstruction algo-
rithms generate volumetric, implicit representations

Figure 1: A cartoon bear created with free-form
level-set surface editing operators.

before converting the objects into explicit surface
models. Advanced special effects in movies utilize
physical simulation to produce computer-generated
fluid flows of floods, storms, pouring/splashing liq-
uids, etc. These simulations require the initial spec-
ification of volumetric shapes, and produce dynamic
volume datasets as output. In these instances, the
scanning, computational or simulation process rarely

Preprint submitted to Computers & Graphics May 21, 2010

produces “perfect” models in the judgement of the
physicians, scientists, modelers and directors who
use them. Frequently the volume datasets and the
surfaces embedded in them need to be fixed, adjusted
and/or edited to meet the requirements of the user’s
application.

Given the abundant sources of volumetric datasets
and the paucity of editing tools for interactively mod-
ifying the implicit surfaces that they define, we are
developing a suite of free-form editing operators for
volumetric implicit surfaces. These editing opera-
tors have been developed for a specific class of im-
plicit surface, level-set models, which are an impor-
tant and powerful type of implicit model that offer
numerous benefits. They combine a low-level vol-
umetric representation with the mathematics of de-
formable implicit surfaces, and are based on for-
mulating and solving a partial differential equation
(PDE) [1, 2]. They have been devised within a well-
developed mathematical framework that provides ro-
bust numerical techniques for evaluation and evo-
lution [3]. They are guaranteed to define simple
(non-self-intersecting) and closed surfaces. Level-
set models easily change topological genus, mak-
ing them ideal for representing complex structures of
unknown or transforming genus. Additionally, they
provide the advantages of implicit models, e.g. sup-
porting straightforward solid modeling operations
and calculations, while simultaneously offering a
surface modeling paradigm. One drawback of using
level-set techniques based on conventional distance
fields is the inability to represent arbitrary sharp fea-
tures. However, uniform and adaptive complete dis-
tance fields [4, 5] define fields that are not band-
limited and are able to capture exact surface details.
Additionally, Novotny et. al. [6] presents a method
for voxelization of solid objects containing sharp de-
tails.

The mathematics, algorithms and techniques needed
to implement numerous interactive, free-form level-
set modeling capabilities have been developed.
These capabilities have been implemented utilizing
a pre-existing level-set library, and incorporated into
an interactive modeling system. Key to making these
free-form editing operators interactive are new data
structures, which have been integrated into the li-

brary, that minimize running times by localizing all
computations and surface updates. We have designed
several level-set speed functions that yield flexible
surface-editing operators. These operators provide
the user an intuitive and straightforward way to in-
teract with 3D level-set models using conventional
input devices such as a mouse and keyboard.

The surface can be edited through a click-sketch-
and-pull interface that allows a user to identify a
point or Region-Of-Influence (ROI) to be modified
on the surface. An ROI is specified by drawing a
closed curve on the surface. If no ROI is specified,
a superellipsoid or distance function is used to de-
fine what portion of the surface is to be edited. The
user may then pull a point or a curve within the ROI
to produce a free-form surface manipulation. Ad-
ditional operators include surface detailing, carving
and smoothing, as well as a sketch-based technique
that pulls the surface toward a profile curve. These
operators allow a model to be stretched and shaped,
split in pieces, bent and merged smoothly. Topology
changes occur naturally and automatically because
of the properties of level-set modeling. A painting
capability was also added to the system to allow the
user to specify colors on the resulting level-set mod-
els. The cartoon bear in Figure 1 is created using the
surface editing capabilities discussed in this paper.

Contributions. Our work has developed novel level-
set modeling functionality and technology. Firstly,
we have developed a set of free-form editing op-
erators, which provide direct implicit surface ma-
nipulations, within a level-set framework. Since a
level-set model can only be modified via solving
the level-set equation, a speed function, which is
the component of the equation that defines the sur-
face’s evolution, has been devised for each editing
operator. The specific mathematical form of these
speed functions are detailed in Section 4 and sum-
marized in Table 1. These mathematical details
are the main contribution of our work, and furnish
novel modeling/manipulation capabilities for level-
set models. Secondly, the data structures that focus
processing on only those portions of the model’s sur-
face that are changing provide new computational
level-set techniques that enhance interactive perfor-
mance. As compared to previous PDE-based mod-

2

eling approaches, ours is the first that is able to in-
teractively modify a volumetric implicit surface by
solving a PDE. This new interactive level-set mod-
eling capability has been utilized to implement an
additional set of indirect, sketch-based operators, as
described in [7].

2. Related Work

Volume Sculpting. Volume graphics [8] involves
the synthesis, manipulation, and rendering of volu-
metric objects, which are stored as an array of vox-
els. Interactive sculpting tools for clay-like [9, 10]
and solid [11] models represent the material by voxel
data and define tools that can add/remove material,
as well as perform a smoothing operations. Some
sculpting metaphors utilize alias-free volume sam-
pling [12] or uniformly sampled scalar fields [13]
as the volume representation. These efforts are ex-
tended in [14] to achieve interactive editing speeds
using resolution adaptive volume sculpting and also
in [15] to create a real-time sculpting system using
subdivision solids. Some volume sculpting applica-
tions use haptic feedback to give the user a sense of
shaping a virtual material [16]. Volumetric models
are frequently represented as uniform or adaptive 3D
distance fields [17, 18, 19, 20]. Leu and Zhang [21]
describe a method to convert volume sculpted mod-
els into distance fields and apply curvature-based
smoothing using the level-set method. 3D Coat [22]
is a recently released commercial system that seems
to offer some of the capabilities of our operators.
Currently no technical publications are available that
describe its inner workings, so we are unable to com-
pare it to our work.

Level-set models are implicit surfaces embedded
in volume datasets; thus supporting straightforward
solid modeling operations while providing surface
properties such as normal and curvature that may be
used during surface editing. Their main advantage
over voxel-based models is their ability to provide
a high-level surface paradigm based on a low-level
volumetric representation.

Volume Deformations. Free-Form Deformations
(FFDs) [23] place a lattice around a model. Moving

the lattice deforms the 3D space enclosed by the lat-
tice, and therefore deforms the model. Different ap-
proaches to this metaphor utilize curves (wires) [24]
that are placed in close proximity to a manipulated
surface to act as handles that deform the surface
locally, cellular automata [25] for transportation of
mass through a 3D grid or evolving scalar fields that
define deformations of polygonal models [26]. Space
deformation techniques for interactive virtual sculpt-
ing [27, 28] create a deformation field with a volu-
metric tool. There also exists vector field based de-
formations [29, 30] and point-based techniques [31]
for performing free-form deformations of polygonal
meshes.

These editing systems use indirect spatial deforma-
tions to edit the underlying model. Level-set tech-
niques work directly on the implicit surface and do
not deform the space around the model. They pro-
vide more intuitive and straightforward control over
the deforming surfaces.

Implicit Modeling. Implicit models [32, 33] are a
widely used representation for geometric modeling
applications. Soft Objects were one of the first suc-
cessful systems based on implicit models [34, 35,
36]. This original work was extended to create an
implicit modeling system that combines CSG opera-
tions with Barr deformations [37], as well as blend-
ing and warping [38]. The system’s interactive per-
formance was improved in [39, 40]. More techniques
for generating 3D implicit sweep volumes compati-
ble with these systems are described in [41] and is
extended with a sketch-based editing framework [42]
and with a curve-based free-form deformation ca-
pability [43]. Desbrun and Cani [44, 45] present a
hybrid model that combines implicit surfaces with
a particle system, a rigid solid or a mass-spring
network for animation of soft inelastic substances
which undergo topological changes. They also use a
volume-based implicit representation to animate iso-
surfaces defined within a 3D grid that stores a po-
tential field [46]. Some other modeling systems use
skeletons defined as a graph of interconnected sub-
division curves and surfaces [47, 48, 49], interpolat-
ing [50] or variational implicit surfaces [51, 52], con-
volution surfaces [53] or spherical implicit functions
[54], to represent 3D models.

3

Arbitrary deformations to analytical implicit surfaces
require a skeleton structure to create a volumetric
model. Level-set models have volumetric represen-
tations by definition and do not require any addi-
tional operators like skeleton calculations or volume
sweeping.

Sketch-Based Modeling. Sketching communicates
ideas rapidly with approximate input, no need for
precision or specialized knowledge, and easy low-
level correction and revision. Sketch-based model-
ing tools allow the user to sketch the salient features
of a 3D primitive and the system produces the corre-
sponding 3D model in the scene. Our free-form edit-
ing operators extend several existing sketch-based
techniques for meshes [55, 56, 57, 58, 59, 60], para-
metric surfaces [61], procedural surfaces [62], volu-
metric models [63] and implicit surfaces [42, 43, 51,
52, 53, 54] to level-set models.

PDE Models. Level-set methods have been used for
volume sculpting [64], CSG-based surface editing,
automatic blending and curvature-based smooth-
ing [65, 66]. Our new editing operators provide
a significantly more expressive and flexible edit-
ing capability to level set modeling. The interac-
tive level-set modeling features described in this pa-
per have been employed to produce additional indi-
rect, sketch-based editing operators [7]. Mullen et
al. [67] propose a mass-preserving variational ap-
proach for geometry processing of volumetric im-
plicit surfaces and foliations using an Eulerian for-
mulation. Zhang and Lihua [68] developed a ge-
ometric modeling framework based on partial dif-
ferential equations (PDEs) that incorporates geo-
metric constraints and functional requirements into
PDEs. PDE-based volumetric sculpting as imple-
mented in [69, 70, 71, 72] defines smooth surfaces
as a solution to a fourth order elliptic PDE with geo-
metric and physical boundary conditions such as cur-
vature and normals. Lawrence and Funkhouser [73]
propose a painting paradigm for specifying sur-
face deformations for level-set surfaces and triangle
meshes.

In contrast to previous work, our operators and pro-
cessing techniques provide new methods for interac-
tive direct, free-form modifications of level set mod-

els. We also compared our results to previous PDE-
based modeling work in terms of model resolution,
processor speed and running times. The most re-
cent related study [72] uses a maximum resolution
of 65 × 65 × 65 and an approximately three times
slower CPU. Their results show that at this resolu-
tion it takes 16 seconds to 6 minutes for various op-
erations to converge on a solution. The previous vol-
ume sculpting work [64] using an octree representa-
tion for the level-set model can edit volumes with a
resolution of 1024 × 1024 × 1024. They also solve
the level-set equation on a sub-volume and achieve
somewhat interactive running times. They show that
on a 20× 20× 20 sub-volume their average running
time is 6− 7 frames-per-second (fps). A similar op-
eration runs 100 fps with our framework on an ap-
proximately 4 times faster CPU.

3. Level-Set Models

Level-set models are defined as an iso-surface, i.e. a
level set, of a dynamic implicit function φ [1, 2],

S = {x | φ(x, t) = k}, (1)

where k ∈ < is the iso-value, x ∈ <3 is a point in
space on the iso-surface and φ : <3 → < is a scalar
function. The surface is deformed by solving a par-
tial differential equation (PDE) on a regular sampling
of φ, i.e. a volume dataset. The level-set PDE can be
written as

∂φ

∂t
= −|∇φ|F (x, Dφ,D2φ . . .), (2)

where F () is a user defined speed term which de-
pends on a set of order-n derivatives of φ as well
as other functions of x. Level-set methods provide
the techniques needed to change the voxel values of
the volume in a way that moves the embedded iso-
surface to meet a user-defined goal [3]. The scalar
field of a level-set model is represented by a volume
dataset, i.e. a 3D array that stores scalar values in its
elements.

F () defines the speed of the level-set surface at
point x in the direction of the local surface normal
(∇φ/|∇φ|). The surface is deformed over time by

4

Helping plane Helping plane

Figure 2: A loop is created by clicking and dragging a point on the surface (α = 2.0). The first two
frames demonstrate the use of the helping plane (the yellow background). The last frame shows several loops
smoothly merged with each other.

moving either in or out in the direction of the local
normal. The magnitude and direction of the move-
ment is specified by the F function, which is defined
over the entire volume. In order to apply level-set
methods to a particular application, a custom F func-
tion must be designed and implemented. The follow-
ing section describes in detail the F functions that
have been devised for interactive free-form geomet-
ric modeling based on level-set models.

Notice that Equation 2 has a temporal component t.
The modifications to the level set are affected by this
component and the resulting surface produced dur-
ing interactive editing is a function of how the user
moves the anchors, i.e. points and curves, as well as
the speed at which they are moved.

4. Editing Operators

4.1. 3D Input

Our free-form editing operators require the definition
of 3D locations and 3D curves both on and off the
surface using a conventional 3-button mouse. For
3D points on the surface the display’s Z-buffer is
read at the 2D cursor location when the mouse is
clicked. The 3D point in window coordinates is “un-
projected” back into world coordinates to produce a
point lying on the model. For specifying 3D points
off of the surface, we offer two methods. The first
method provides a helping-plane. During editing op-
erations the 2D input produced by mouse strokes can

be mapped onto an arbitrary plane within the scene.
If utilized, the plane can be added at a point of in-
terest on the model and displayed in the scene with
a translucent color. Initially, the plane’s normal is
set to face the user, however, it can be changed to
an arbitrary orientation with a mouse interaction. 2D
input is mapped onto the plane during editing opera-
tions. A helping-plane (displayed in translucent yel-
low) is used in the editing operations in Figures 2,
6, 7 and 11. When specifying a 3D curve, a second
method is available. Here, the 3D curve is defined
to lie on a plane perpendicular to the view direction,
and begins at the point where the first mouse click in-
tersects the level-set surface. We utilize an enhanced
form of Catmull-Rom splines to specify curves [74]
for the editing operators. These splines provide lo-
calized and multi-resolution editing capabilities for
3D curves.

4.2. Pulling a point, symmetric ROI

This operator allows a user to click on a point on the
surface (xs) and drag it. Clicking creates a tracker
particle on the surface at xs. A part of the surface, de-
fined by a radius of influence around xs, then moves
outward. As the 3D cursor location (xc) changes the
tracker particle moves toward xc, but is constrained
to stay on the deforming surface; thus defining an
updated xs value for the surface evolution. The new
position of xs lies on the line connecting xs to xc,
where this line intersects the surface. The evolution
stops once the tracker particle reaches the 3D cursor

5

Figure 3: Effect of changing the α parameter in Equation 3. α = 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0.

Figure 4: Defining and deforming a patch on the surface. α = 4. ε = 5 voxels.

location or the mouse button is released. The radius
value may be changed any time during the move-
ment. The operator produces a symmetric modifica-
tion around xs. While this is the simplest of editing
operators, we did find it useful for designing and cre-
ating handle-like structures, e.g. in Figure 2.

The speed function that implements this operator is

F (x) =

{
cosα(π/2 ∗ ds(x)/r) ds(x) ≤ r

0 ds(x) > r,
(3)

where x is a point on the surface being evaluated,
and ds(x) is the geodesic distance from the point x
to the point being dragged, i.e. xs. The geodesic dis-
tance between xs and all the voxels within the ROI
can be calculated using the sweeping algorithm ex-
plained in Section 4.9 and Algorithm 1. Equation 3
states that the speed of the surface evolution drops
off with a cosine function depending on the distance
from the dragged point. The speed goes smoothly to
zero at distance r (the edge of the ROI). The shape
of the drop-off may be controlled by the parameter
α, which exponentiates the cosine function. Figure
2 shows a surface being edited using this operator
(α = 2.0). Figure 3 demonstrates the different bump
shapes created by varying α.

4.3. Pulling a point, arbitrary ROI

For this operator the user first draws a closed bound-
ary curve (Cb) on the surface to designate an ROI,
then clicks and drags a point (xs) within the ROI. All
points in the ROI move outward, with the points clos-
est to xs moving the fastest. The ROI’s surface speed
gradually decreases to zero at the boundary curve.
As with the previous operator the tracker particle xs

moves towards the cursor’s 3D location (xc), but re-
mains on the surface. The surface movement stops
either when xs reaches xc or when the user releases
the mouse button. In Figure 4, a Cb curve, defined by
the red control points, is drawn in yellow. The user
clicks and drags a point upwards and then to the left
to produce a surface modification.

The speed function for the operator is

F (x) = f(dout(x)) ∗
(

max(dxs
in(x))− dxs

in(x)

max(dxs
in(x))

)α

(4)

f(d) =

{
1/2− 1/2 ∗ cos(π ∗ d(x)/ε) d ≤ ε

1.0 d > ε,

(5)
where dxs

in(x) is the geodesic distance to xs from x,
max(dxs

in(x)) is the maximum of these values over
6

(a) α = 1 (b) α = 2 (c) α = 3

(d) α = 4 (e) α = 6 (f) α = 9

Figure 5: The α parameter in Equation 4 changes the shape of the modification.

Figure 6: A curve is placed on the surface and pulled first upwards then towards the right.

all points in the ROI, and dout(x) is the geodesic dis-
tance to the boundary curve from x. The first term,
f(dout(x)), ensures that the speed smoothly goes to
zero at the boundary curve starting at some distance
ε from the boundary. ε is a user-defined parameter.
The second term of the equation decreases the speed
as the point on the surface (x) gets further from the
point being dragged (xs). α is once again a parameter
that controls the shape of the “bump” pulled up from
the surface. Increasing α produces a faster drop-
off. Examples of varying the α parameter are given
in Figure 5. The geodesic distance dxs

in(x) is calcu-
lated by sweeping out distance information from xs

to voxels that lie on the surface using Algorithm 1
(see Appendix and Section 4.9).

4.4. Pulling a curve on the surface, symmetric ROI

With this operator the user draws an open curve Cs

on the surface, clicks on the curve, and then drags it.
The surface near the curve moves out to follow the
curve. All points on the surface within a specified
distance from Cs move with a speed that decreases
proportionally to their distance from the curve. In
Figure 6, the curve is first pulled up, then dragged
slightly towards the right. Observe that the surface
bends slightly as it follows the user’s input. The
speed function for this operator is

F (x) =

{
(1.0− dcs

in(x)/r)α dcs
in(x) ≤ r

0 dcs
in(x) > r,

(6)

7

Figure 7: A patch on the surface is raised using a handle. The handle is pulled in an arc towards the right
side of the window.

(a) (b) (c) (d)

Figure 8: An example of the surface detailing tool. The two images on the left consist of offsets on the surface
created by continuous cursor strokes (a, b). The two images on the right demonstrate interactive carving of
the Chinese character for sky (c, d).

where r is the width of the ROI and dcs
in(x) is

the geodesic distance between x and the curve Cs.
Points near the curve move the fastest and the speed
decreases to zero at distance r from the curve. The
evolution stops once the user releases the curve. α
can be used to further control the shape as explained
in the previous operators.

4.5. Pulling a curve on the surface, arbitrary ROI

The user first draws a closed curve (Cb) on the sur-
face to define an ROI and another curve (Cs) on the
surface to be used as a handle. Clicking and drag-
ging a point on the curve moves the handle, and de-
forms the surface within the ROI. Figure 7 shows a
sequence where the user drags the handle in an arc
towards the right side of the window. The speed
function for this operator is

F (x) = f(dout(x)) ∗
(

max(dcs
in(x))− dcs

in(x)

max(dcs
in(x))

)α

,

(7)

where dcs
in(x) is the geodesic distance to curve Cs

and dout(x) is the geodesic distance to the bound-
ary curve Cb from x. max(dcs

in(x)) is the maximum
over all points in the ROI. f(dout(x)) is defined in
Equation 5. The points closest to the handle move
the fastest, and the points on or outside of the bound-
ary curve do not move. The speed decreases as the
distance to the handle curve increases, and goes to
zero at curve Cb. The evolution stops once the user
releases the curve. α can be used to further control
the shape as explained in the previous operators.

4.6. Surface Detailing/Carving

With this operator the user picks a superellipsoid-
shaped tool and moves it over the surface to add
or subtract features. The surface is locally modi-
fied in the general shape of the chosen tool. The
size of the tool can be changed interactively and the
height/depth of the features depends on the speed of
the strokes. The faster the cursor is moved over the
surface the lesser the detail that is added and vice

8

Cd

Cs

L

End point
on Cd

End point
on L and Cs Level-set surface

Shortest distance
from end point on
Cd to level-set
surface

Figure 12: Projecting the cross section curve onto
the level-set surface. The line L in 3D space is cre-
ated using the closest points to the end points of Cd

on the surface. Points starting from L move towards
Cd and stop once they reach the surface, creating the
projected curve Cs.

versa. A spherical tool is used to create the example
in Figure 8 a-b.

The speed function for this operator is

F (x) =

{
0 fse(V) > 0

β ∗ fse(V) fse(V) ≤ 0
(8)

V = x− xc

The tool is centered at the cursor point xc. fse(V)
takes in the relative position of x with respect to
xc and evaluates the superellipsoid implicit inside-
outside function [75]. fse is negative inside the su-
perellipsoid, therefore setting β = −1 drives the
surface outwards until it reaches the superellipsoid’s
boundary where fse = 0. Changing the superellip-
soid’s shape parameters (ε1 and ε2) will also change
the shape of the surface detail.

Interactive carving is implemented in the same man-
ner, only with β = 1. The user clicks and moves
the cursor over the surface, pushing the surface in.
This can be interpreted as carving out material. The
speed of the strokes determines the depth of the carv-
ing. A fast movement creates a shallow mark on the
surface while constant slow strokes create deeper in-
dentations. Figure 8c-d shows a sample carving us-
ing the spherical tool.

We have also utilized the carving operator as an in-
teractive eraser tool to remove some parts of a model.
A feature can easily be removed by adjusting the size
of the tool and moving it over the unwanted portion

of the model. Figure 9 demonstrates the use of this
operator to remove the spout from the Utah teapot.

4.7. Sketching Cross-sections

With this operator a curve may be used to define
a cross-section of a local shape change. The user
draws a closed boundary curve (Cb) on the surface to
define an ROI and another curve (Cd) that comes up
out of the surface and defines a desired cross-section
of the desired shape. Every point within the ROI
moves outwards with a speed defined in Equation 9
until the surface reaches Cd. We created a “moun-
tain” on the surface with Cd defining the peak and Cb

defining the extent of the foothills (Figure 10). Once
the evolution starts, a third curve (Cs) is created on
the surface. This curve is represented as a dense set
of points and is the projection of Cd onto the surface.

The projection curve is created in two steps. First,
the closest points on the surface to both end points
of Cd are found. A 3D line segment L is created
using these two closest points. L and Cd are both
represented with the same number of dense points
and a one-to-one correspondence is defined between
each pair of points on the curves. Next, all points
on L move to the level-set surface either towards or
away from their corresponding points depending on
their position with respect to the surface and Cd. The
points stop when they reach the surface creating a
projection curve Cs of the cross-section curve Cd on
the surface. Figure 12 shows Cd, Cs and L around
the level-set surface. At every step of the evolution,
Cs moves toward Cd and the surface grows to meet
the new Cs, until Cs (and the surface) reaches Cd. We
recognize that there are cases where ordering/pairing
produced by the projection may result in inconsisten-
cies as the surface deforms. We have not experienced
this in our work to date. If problems do arise in the
future, a more more robust projection method [76]
may be utilized.

The red dots on the cross-section curve in Figure 10
are control points that can be manipulated by click-
ing and dragging. New control points can also be
added to the curve. After a control point is moved
or added, the curve is recalculated and the level-set

9

(a) (b) (c) (d) (e)

Figure 9: Interactive carving as an erasing tool. Frames (a-d) demonstrates the spout being erased and the
last frame (e) shows the final result.

cs

(a) (b) (c)

(d) (e) (f)

Figure 10: Two curves are defined (a), and the surface is grown to fit to both. The final result is shown from
a different point of view(b, c). (d) a control point is modified. (e) another control point is added. (f) the final
result.

equation is solved once more to fit to the new cross-
section. In Figure 10 (bottom), an initial bump is
shown in the leftmost frame. The control point on
the left is pulled towards the top-left corner first and
then a new control point is added on the right hand
side of the bump. Both modifications result in an im-
mediate change in the shape of the surface, as it fits
to the new cross-section curve.

The speed function for this operator is

F (x) =
dup(x)

max(dup(x))
∗ f(dout(x)) ∗(

max(dcs
in(x))− dcs

in(x)

max(dcs
in(x))

)α

, (9)

where dout(x) is the geodesic distance from x to Cb,
and dcs

in(x) is the geodesic distance from x to Cs. The
first step of calculating dup for point x involves find-
ing the closest point in the point set representing Cs

from x, called xcs. Recall that xcs has a correspond-
ing point on Cd, called xcd. dup(x) is the Euclidean

10

(a) (b) (c)

(d) (e) (f)

Figure 11: (a-b) Two curves define the new shape of the nose. (c-d) The surface fits to these curves. (e)
The cross-section curve is modified for further refinement of the final shape. (f) The final result. (Some
curvature-based smoothing is applied later on to produce the final shape of the nose in Figure 23). A point
representation of the surface is used in (c) and (e) to provide a clearer view of the curves and control points.
α = 2.0.

distance between xcs and xcd. Both max functions
are taken over all points in the ROI. f() is defined in
Equation 5, and ensures that the speed function goes
to zero (and therefore the evolution stops) within a
distance ε to boundary curve Cb. α can be used to
further control the shape as explained in the previous
operators.

The first term of Equation 9 ensures that the evolu-
tion will stop once the surface reaches the Cd curve.
Together the last two terms define the speed function
as a decreasing function of geodesic distance from
the projected curve Cs to the boundary curve Cb. We
used this operator for the edits on the nose of the
mannequin head in Figure 23. A close-up showing
how the new nose is created is in Figure 11.

4.8. Interactive Smoothing

We found it useful to add an interactive smoothing
tool in our editing system. This tool is a flexible and
interactive version of the local smoothing operator
described in [65]. The user clicks on the surface and
moves the cursor over the area that needs smoothing.
A curvature-based speed function then modifies the
surface following the user’s strokes. The smoothing
speed function is described in Equation 10. The op-
erator works within a fixed radius of influence. The
size of the tool and the amount of smoothing to be
applied can be adjusted by the user. The smoothing
speed function is

F (x) = γ ∗ g(dg(x)) ∗ κ(x) (10)
11

(a) (b) (c) (d)

Figure 13: Interactive smoothing on the spout of the Utah teapot. (a) The initial scan converted model. (b)
Smoothing tool is placed over rough region. (c) Smoothing has been locally applied. (d) Smoothing completed
around the area where spout meets the teapot.

g(d) =
1.0 d ≤ r − ε

1/2 + 1/2 ∗ cos(π ∗ (d− r + ε)/ε) r − ε < d ≤ r

0.0 d > r,
(11)

where γ is a constant that controls the amount of
smoothing, dg(x) = |xc − x| is the distance from
the point x to the cursor xc, κ is mean curvature, r is
the radius of the smoothing tool, and ε defines a tran-
sition region near the edge of the ROI. g(d) is a func-
tion that ensures that the amount of curvature-based
smoothing drops off smoothly to zero at the bound-
ary of the smoothing tool at a user-specified distance
r. Figure 13 demonstrates the use of smoothing on
the spout of the Utah teapot with γ = 0.3

4.9. Voxels inside an ROI

The voxels within the ROI are calculated using a
sweeping algorithm (Algorithm 1). For symmetric
operators, like pulling on a point with symmetric
ROI, the algorithm first adds the point on the surface
that the user clicked (xs) to the list of voxels within
the ROI. All immediate “surface-crossing” neighbor-
ing voxels of xs are added to the list representing the
ROI along with their Euclidean distances to xs. A
“surface-crossing” voxel is one that has the level set
between it and one of its immediate neighbors on the
grid. This is easily identified via a sign flip between

the φ values of the voxel and its neighboring voxels.
Next, all immediate neighbors of these newly added
voxels which are also “surface-crossing” are added
to the ROI list. Their distance to xs is calculated
by adding the distance of the intermediate voxel in
the list and the Euclidean distance between the new
voxel and the intermediate voxel. We make sure that
this distance is updated in case a shorter route is dis-
covered further along in the computations. If the op-
erator uses a curve on the surface instead of a point,
the algorithm uses the sample points on this curve as
initial points. The same sweeping algorithm is used
with multiple xs as initial points. All possible paths
to the curve are considered and the shortest path to
the curve is used to calculate the geodesic distances.

For those operators that employ a user-drawn bound-
ary curve to define an arbitrary ROI, the algorithm
first marks all the surface-crossing voxels adjacent
to the boundary curve. Sweeping out from the ini-
tial ROI voxels adds all encountered surface-crossing
voxels to the ROI voxel list unless marked by the
boundary curve. The algorithm visits all surface-
crossing voxels enclosed by the boundary curve in a
radially symmetric fashion and creates a list of vox-
els along with their geodesic distances to the initial
curve or point defined on the surface. Similarly dis-
tance information may be swept in from the bound-
ary curve voxels to all the surface voxels inside the
ROI to calculate distances to this boundary curve.

12

Geodesic distance fields for non-convex shapes
might have C1 discontinuities at points equidistant
to multiple points on the boundary or anchor curves.
Schmidt and Wyvill [41] address this issue and sug-
gest techniques to fit smoothed approximate distance
fields to these surfaces. Non-smooth distance fields
used by the speed functions may result in disconti-
nuities in the resulting surface. We apply curvature-
based smoothing locally within the ROI at regular
intervals to overcome these artifacts.

When an editing operator is based on purely spa-
tial Euclidean relationships, unwanted surface move-
ments may be produced on nearby but unselected
portions of the model, as seen in Figure 14a and 14b.
Here, since the ROI is based on Euclidean distance,
the bottom surface bulges out toward the protrusion
being created by pulling the blue point, an unwanted
modification that will eventually produce a topology
change not specified by the user input. Basing the
operators on geodesic distances allows us to prop-
erly localize the editing operation, as seen in Figure
14c and 14d. The blue points represent xs and the
pink points highlight the ROI in Figure 14a and 14d.

5. Modeling System

The free-form surface-editing operators have been
implemented in an interactive level-set modeling
system. The system consists of four major compo-
nents depicted in Figure 15, (1) the level-set library
that solves the level-set PDE on a narrow band, (2)
the OpenGL user interface (UI), (3) the data struc-
tures that hold the volume and the narrow-band infor-
mation, and (4) the routines that translate user input
into speed functions for the level-set PDE.

The first component of the framework utilizes the
VISPACK level-set library [77] to efficiently solve
the level-set PDE. We have developed an editing user
interface (UI) within an OpenGL application, as de-
scribed in Section 5.3, which has been integrated
with the VISPACK library. The application accepts
specific user actions and translates them into speed
functions for the level-set equation. The actions in-
clude mouse clicks and strokes, as well as keyboard
input, that are designed to provide the user with an

Figure 15: Level-set surface-editing framework.
User input is translated into level-set speed func-
tions. The level-set PDE is solved on a portion of
the narrow band by the VISPACK library, and the re-
sulting edited model is displayed in the UI.

intuitive and straightforward way to interact with the
model and underlying library functions. We have
also enhanced the narrow-band implementation1 in
VISPACK to further improve its computational per-
formance. Section 5.4 describes the additional data
structures used to achieve real-time evaluation of the
level-set equation in a subset of the narrow band.

5.1. Computational Pipeline

The steps demonstrated in Figure 16 are processed
every time a surface operator is invoked by the user.
An ROI is calculated based on a selected point or
a curve on the surface and either the size of the
symmetrical tool or the arbitrary boundary curve
drawn by the user. Speed functions explained in Sec-
tions 4.2-4.7 are used to calculate the change of φ
values at all voxels within this ROI. In the next step,
the scalar (φ) values at these voxels are updated. This
update implicitly moves the level set based on the
speed function. In the final step the new implicit sur-
face is extracted from the updated scalar field and
displayed on the screen.

5.2. Numerical Techniques

The speed functions described in Sections 4.2-4.8
create hyperbolic PDEs that require upwind differ-
encing schemes for calculating spatial derivatives.

1Rather than track all the level sets, the narrow-band method
focuses computation on those voxels which are located in a nar-
row band around the zero level set.

13

(a) (b) (c) (d)

Figure 14: Pulling on a point, symmetric ROI with a 15 voxel radius. (a-b) The ROI is calculated by checking
every voxel within a 153 bounding box centered at xs (shown in blue in (a) and (d)). All voxels with a
Euclidean distance of 15 or less to xs are added to the ROI. (c-d) The ROI is calculated using the sweeping
algorithm (Algorithm 1). The pink points in (a) and (d) represent the voxels in the ROI for each case. Using
geodesic instead of Euclidean distance ensures that only the selected portions of the model are modified.

User Input Compute
ROI

Update
model in UI

Calculate speed
within ROI

Update voxels
within ROI

Create & Solve
PDE

Figure 16: The computational pipeline.

VISPACK implements first and second order ac-
curate upwind schemes, while third or fifth or-
der schemes like ENO and WENO can be used to
achieve more accurate solutions. Calculating the
higher order numerical schemes incurs a higher per-
formance cost, presenting a tradeoff between time
and accuracy. Curvature-based smoothing explained
in Section 4.8 creates a parabolic PDE. Second or-
der accurate central differences can be used for this
kind of PDE, as well as higher order upwind meth-
ods. Time integration is achieved using second order
Eulerian techniques. There also exist third and fifth
order TVD-Runge Kutta methods for time integra-
tion. These higher order finite difference methods

are explained in more detail in [3].

VISPACK utilizes the sparse-field algorithm [78]
that uses an approximation to the distance transform.
This algorithm makes it feasible to recompute the
neighborhood of the level-set model at each time
step without the need to stop the evolution and re-
normalize the distance field. The distance field is
re-normalized on the fly as the values get updated
during the level-set evolution.

5.3. The OpenGL Interface

The interface supports two interaction modes. The
first one is the view mode. In this mode, the user is
able to change the view of the object by applying ro-
tate, zoom and pan via mouse input. The user may
choose one of the surface-editing operators (Section
4) while in the edit mode. The user interactions for
these operators include drawing curves on/over the
surface and/or clicking on and dragging points on
the surface. A user draws a curve by clicking and
moving the cursor over the surface. The cursor po-
sitions are tracked and define a list of control points.
An enhanced Catmull-Rom spline [74] is fit to these
control points once the mouse button is released. The

14

user can switch between view and edit modes using
a single key stroke.

Our editing interface includes techniques from
sketch-based modeling [42, 58], volume sculpting
[64], spatial deformations [28], and level-set mod-
eling [65], as well as user interfaces from previous
free-form deformations research [24]. Although our
interaction techniques are not unique, they provide
new, intuitive and expressive means for modifying
level-set models utilizing our novel surface editing
operators.

The level-set model may be displayed either with
point or polygon rendering. The VISPACK library
can return a set of points lying on the level-set sur-
face. These are displayed using OpenGL’s point ren-
dering capability. The surface may also be displayed
as a set of polygons which can be extracted from
the level-set volume using a polygon extraction algo-
rithm [34, 79, 80]. Point rendering is much faster and
allows more interactive editing feedback, while poly-
gon rendering gives a higher quality result and can
be utilized to export mesh models. We have found it
useful to be able to switch between the two types of
viewing, allowing the user to choose either respon-
siveness or quality when rendering. Normally, point
rendering is used to maximize interactivity during a
modeling session. The user may then switch to poly-
gon rendering to produce a higher quality model in
order to more closely evaluate the session’s results.

We have also incorporated an interactive painting
tool into our modeling framework. A paint brush
with an adjustable size can be moved over the sur-
face to apply different colors. Only the surface vox-
els within the tool’s extent are painted. The user can
pick any of the pre-defined colors. Every color has an
ID number and the color ID for every voxel is stored
in the 3D grid. A tri-linear interpolation is used to
determine the color of the actual surface points while
displaying the model. Some examples can be seen in
our final results in Figures 19, 20, 21, 22, 23 and 24.

5.4. Data Structures

VISPACK contains a narrow-band implementation
for efficiently solving the level-set equation [78].

The technique localizes computation to only those
voxels that lie within a narrow band of the level-set
surface. The narrow-band data structure is imple-
mented with a set of doubly linked lists, each storing
a single layer of voxels within a certain distance of
the surface. The layer may either be inside/outside of
the surface or contain the surface itself. Each voxel is
only stored in the list associated with the layer within
which it resides, and the order of voxels within each
list is arbitrary. While this implementation provides
an efficient way to store and update the narrow band,
it requires that the level-set PDE be solved over the
whole surface. This is inefficient when an editing
operation only affects a subset of the voxels, which
requires traversing only a small portion of the doubly
linked lists.

Since most of our surface-editing operators are de-
signed to produce local surface modifications, it is
advantageous to add another layer of data structures
over the existing one in VISPACK. These additional
data structures give the system the ability to limit
computation to the subset of the level-set surface
that is actually being modified. The new data struc-
tures are implemented as C++ vectors of pointers
that point to entries within the VISPACK linked lists.
These pointer data structures create an easy way to
access a subset of voxels that are spatially contigu-
ous. The elements in the vectors are created us-
ing a flood fill algorithm when the user first clicks
on a point of interest. All the voxels on the sur-
face up to a certain distance from the click point
or within a region of influence (ROI) are added to
these new vectors. Entries in the new vectors are
updated, added and/or deleted during surface edit-
ing as voxels are added or removed from the original
VISPACK narrow-band lists. An additional 3D ar-
ray of pointers provides constant-time access to any
narrow-band element. Each element in the 3D ar-
ray points to the corresponding element in the VIS-
PACK narrow-band list. These pointers are kept up-
to-date with every change to the narrow-band data
structures.

Figure 17 shows the VISPACK narrow-band data
structures within the dotted green box, as well as the
new data structures for further localizing the level-
set computations. VISPACK keeps a linked list of all

15

Surface
voxels

Outside
layer 1

Outside
layer 2

Outside
layer N

Inside
layer 1
Inside
layer 2

Inside
layer N

1 2 N

Outside layer

Surface
voxels

1 2 N

Inside layer

* *

*

*

* *

*

Narrow Band

Point (x,y,z)

float distance

Figure 17: Three additional data structures (Surface voxels vector, Outside layer vectors and Inside layer
vectors) are added to the narrow-band VISPACK data structure. The new data structures support interactive
update rates by identifying the subset of voxels needed to solve the level-set PDE during an editing operation.

the voxels on the model’s surface, as well as separate
linked lists for the voxels that are 1 to N layers away
from the surface, both inside and outside. The ele-
ments of the linked lists store the 3D coordinates of
the center of a voxel and the floating point distance to
the surface, as seen in the lower right corner within
a circle. We have added a collection of pointers to
the original VISPACK linked-list elements that point
to the subset of voxels involved in a surface editing
operation. The pointers are kept in related vectors,
e.g. vector Outside Layer 1 keeps pointers to voxels
just outside the surface and Outside Layer N keeps
pointers to the voxels at the outer boundary of the
narrow band. Similar information is stored for In-
side Layer 1 through N. The Surface Voxels vector
is a single list that keeps pointers to the surface vox-
els. Since these layers do not necessarily have the
same number of voxels we utilized C++ vectors to
represent each collection.

Note that there is no prescribed order or structure to
the pointers to the VISPACK list elements kept in
each vector. The first pointer in the Surface Vox-

Outer Layer 1

Outer Layer 2

Outer Layer 3

Inner Layer 2

Inner Layer 1

Surface Voxels

Figure 18: Changes in the narrow-band linked lists
as the curve on the left evolves into the curve on the
right.

els vector may point to the second element of the
VISPACK Surface Voxels list. During editing sev-
eral updates to any of these lists may happen. As
the surface grows outwards some voxels are added
to the Surface Voxels list, while some are dropped
and possibly added to Inner Layer 1. The shift hap-
pens in every layer, i.e. a voxel in the 2nd inner layer
could shift to the 3rd and so on. On the boundaries
of the narrow band some voxels are dropped from In-
ner Layer N and some new voxels are added to Outer
Layer N. The pointers in the relevant vectors are kept

16

Figure 19: Lake with unusual inhabitants. The
model is created on one side of a box using several
of the level-set editing operators.

up-to-date with every change made to the original
VISPACK lists, e.g. the pointer to the voxel that is
dropped from VISPACK Inner Layer N also is also
removed from the associated vector. The scenario is
similar when adding a new voxel to any list. Fig-
ure 18 presents a 2D example that demonstrates the
changes in the narrow-band linked lists as the sur-
face evolves. The layers of the narrow band are color
coded such that the red cells represent the surface
voxels, blue cells represent inner and green cells rep-
resent outer layers. A legend is also provided at the
bottom of the figure.

We also keep a 3D array of pointers at the same res-
olution of the volume to gain constant time access
to any element in the VISPACK linked lists. These
pointers point to the entries in the linked lists asso-
ciated with the (i,j,k) locations in the 3D grid. This
array is used to initialize the pointer vectors men-
tioned above when the user clicks on an arbitrary
point on the surface. The size of the vectors, i.e. In-
side/Outside Layer 1 through N and the Surface Vox-
els, is directly proportional with the size of the sur-
face area that is being modified and is negligible for
the operators discussed in this paper in comparison
with the overall memory usage. For example, the
combined size of these vectors is (2 ∗ N + 1) ∗ M ,
when editing M voxels on the surface. N = 3 is
the width of the narrow band in our implementation.
These additional data structures produce a consid-
erable speed-up when working with high resolution
volumes. We achieved approximately 10 times faster
running times using the additional pointer vector data

Figure 20: Cartoon octopus. The body of the octo-
pus is created on one side of a box using the sketch-
based editing operator. The head and the arms are
grown from the body by pulling on points using a
symmetrical ROI and the eyes are carved into the
head.

structured compared to using just the original VIS-
PACK narrow-band data structures for a 1283 volume
with an ROI that has a 20 voxel radius with the edit-
ing operators from Section 4.2. The surface embed-
ded in this volume has approximately 1282 ∼ 16K
voxels. There are approximately πr2 = π202 ∼
1.2K voxels within the 20 voxel wide symmetric
ROI. Since the running time is linear with the num-
ber of voxels processed, our data structures provide
more than 10 times speed up by restricting the com-
putations to a small area on the surface. Therefore,
the extra memory usage allows us to create an inter-
active modeling framework.

6. Results

We created several examples to demonstrate the
modeling capabilities of our editing operators. Fig-
ure 19 is a lake with plants, rocks, a floating log and
an imaginary animal (a cross between a frog and a
hippo). The initial model is a 140 × 140 × 20 box
within a 161× 161× 101 volume. The model is cre-
ated on one side of the box using a mix of editing

17

operators explained in Section 4 and Table 3. Figure
20 also uses the box model to create the body of the
octopus. In this case we doubled the resolution of the
box to 322×322×202. The head, nose and the arms
are grown from the body and the eyes and the mouth
are carved into the head. We erased the spout and
top handle of the Utah teapot and added new deco-
rative handles to create the model in Figure 21. The
dimensions of the teapot model is 156×232×124. In
the next example we edit a 200× 250× 200 superel-
lipsoid within a 401 × 401 × 401 volume. The eyes
are added by pulling the surface up and the mouth
is modeled using interactive carving (See Figure 22).
Figure 23 shows a fantasy character created from the
mannequin head. The hair, horns and eyebrows are
added, and the ears, eyes, nose and chin are modi-
fied. The resolution of this model is 360×435×510.
The body of the cartoon bear in Figures 1 and 24
is designed as the union of two superellipsoids in a
320×320×600 volume. The arms, claws and the coat
detail are added using the surface detailing tool. The
legs and the nose are pulled out from the body sym-
metrically and the eyes are carved in. We applied our
editing operators to a dataset obtained from a vascu-
lature MRI scan (Figure 25). This dataset contains
topological errors inherent to 3D scanning. Interac-
tive carving is used to separate two blood vessels that
were incorrectly merged. A blood vessel was inter-
actively connected that was incorrectly split during
reconstruction by pulling on one end of the vessel
and merging it with the other end. The dimension of
the model is 621× 371× 346.

Table 3 summarizes all of the editing operators used
to create these results along with the running times in
frames per second (fps) on an Apple MacPro desktop
computer with an Intel 8-core 3.2GHz CPU and 14
GB of memory running MacOS 10.5. Running times
demonstrate interactive rates for a variety of volume
resolutions.

The evaluation time for the speed functions is lin-
ear with the number of voxels within the ROI.
This number is directly related to the radius of
the ROI, which is defined in voxels. In other
words, changing the resolution does not change
the running time of a certain operator, however,
one would need to double the ROI radius to cover

Figure 21: The Utah teapot is modified to create
a decorative two-handle teapot. The spout and top
handle are erased and new handles are added. Edits
are made to one side of the model and a volumetric
reflection operator is used to create the symmetric
result.

Figure 22: Cartoon frog. A superellipsoid is used as
the initial head model. The eyes are added by pulling
the surface up and the mouth is modeled using inter-
active carving.

the same spatial area represented at half the reso-
lution. The local editing operations run indepen-
dent from the actual volume resolution. A good
proof to this claim can be observed in Figures 19
and 23. As stated in Table 3, the operation for
creating the plants and rocks on the lake is the
same one used to create the horns on the man-
nequin head. The second model is approximately
10 times larger in surface area than the first, how-
ever, both editing operations run around 200 fps
as we create the tip of the horns which have the
same size ROI as the plants on the lake. Table
2 shows running times in terms of frames-per-
second for a sphere model with given radius and

18

Figure 23: A fantasy character is created by adding horns and pointy ears to the mannequin model. The
chin, eyes and nose are also modified and hair detail is added.

the same operator, i.e. pulling a point with sym-
metric ROI. The number of voxels within the ROI
gets four times bigger every time the ROI radius
doubles. The comparison of running times as the
resolution increase shows that the run times are
linear with the number of voxels processed for
that operation. A comparison of the last two rows
of Table 2 also shows that the running times are
independent from the volume resolution or the
surface area of the model.

While narrow-band schemes effectively address the
problem of computational complexity in the origi-
nal level-set formulation, they explicitly store a full
Cartesian grid and use additional data structures to
identify the narrow-band grid voxels. More ad-
vanced data structures have been proposed to ad-
dress level-set memory issues, i.e. octrees [81], DT-
Grid [82], and run-length encoding (RLE) [83].
These data structures reduce the memory require-
ments form O(n3) to ∼ O(n2). However, they all

suffer from logarithmic random access times. Oc-
trees are also used in adaptive sampling of 3D dis-
tance fields [17] to create adaptive representations
of 3D volumetric models. Adaptive Distance Fields
(ADFs) are also not applicable to our work because
the level-set equation must be solved on a uniform
grid.

7. Conclusion and Future Work

We have created a set of interactive, free-form edit-
ing operators for level-set models. The mathemat-
ics, algorithms and techniques needed to implement
numerous level-set modeling capabilities have been
developed. An OpenGL interface is combined with
the VISPACK level-set library to create an interac-
tive level-set modeling system. VISPACK’S narrow-
band data structures have been enhanced to local-
ize all computations and updates to improve running
times. We have designed several speed functions that

19

(a) (b) (c) (d) (e)

Figure 24: A cartoon bear is created using level-set surface editing operators. (a) The initial body is modeled
with the union of two superellipsoids. (b-c) The bear is created using a collection of operators, e.g. surface
detailing, carving, pulling on a point with symmetric ROI. (d-e) The painted final model is shown from two
different angles.

implement novel level-set surface-editing operators.
A 3D painting capability has also been added to the
system. These operators allow a level-set model to
be stretched and shaped, split into pieces, bent and
merged smoothly. Topology changes occur naturally
and automatically because of the properties of level-
set models.

Our work stands apart from previous work in that
it is the first to develop free-form editing operators
within a level-set framework. As compared to previ-
ous PDE-based systems, ours is the first that is able
to interactively modify and deform a volumetric im-
plicit surface by solving a PDE. Several examples
have been presented to demonstrate the flexibility
and usefulness of the editing operators. These ini-
tial examples have been created with low-resolution
volume datasets, which limit the amount of surface
detail that can be specified.

A major limitation while editing level-set mod-
els is the memory storage costs associated with
the increasing model resolutions. Now that the
mathematics of the operators have been designed,
tested and validated, the next phase of our work will
implement these editing capabilities within a high-
resolution level-set framework, e.g. DT-grids [82]. It

is expected that additional data structures will once
again need to be developed to localize computation
and expedite data access. This will allow us in the
future to create level-set models with much finer sur-
face structures and shapes. One of the advantages of
level-set models, the ability to automatically handle
topology changes, turns out to be a liability when a
priori knowledge of the topology exists for the object
to be segmented. [84, 85, 86] address this issue by
introducing restrictions to the evaluation of the level-
set function. It is crucial and also very straightfor-
ward to incorporate their work into our modeling sys-
tem to give the user control over topology changes
during surface editing. We also intend to make sev-
eral improvements to the editing application itself.
An undo capability will be added using an editing
history, as well as additional mirroring and handle
reuse capabilities.

Our framework is capable of performing interac-
tive surface manipulations. These manipulations
are currently limited to adding and removing sur-
face details as well as locally reshaping level-set
models. It is still an open question to do more
structural deformations such as bending a tube
at a fixed point using level-set methods. There
are skeleton-based implicit techniques to achieve

20

(a)

(b) (c)

(d) (e) (f)

Figure 25: Topological repair of a vasculature data set. (a and f) The original model. (b-c) The volume is
manipulated using interactive carving to separate two vessels that were merged due to errors in 3D scanning.
(d-e) The volume is manipulated to recover lost data by connecting a vessel that was separated.

these kinds of deformations [47, 48, 87].

Acknowledgements. The authors would like to thank
Ross Whitaker for the use of and assistance with
the VISPACK library, Karan Thaker for his contri-
butions to Figures 1, 23 and 24, and Linge Bai for
her contributions to Figure 8. This research was sup-
ported by NSF grant CCF-0702441.

References

[1] S. Osher, J. Sethian, Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi
formulations, Journal of Computational Physics 79
(1988) 12–49.

[2] J. Sethian, Level Set Methods and Fast Marching Meth-
ods, 2nd Edition, Cambridge University Press, Cam-
bridge, UK, 1999.

[3] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Im-
plicit Surfaces, Springer, Berlin, 2002.

[4] J. Huang, Y. Li, R. Crawfis, S. C. Lu, S. Y. Liou, A com-
plete distance field representation, in: Proc. IEEE Visual-
ization, 2001, pp. 247–254.

[5] J. Huang, R. Crawfis, Adaptively represented complete
distance fields, in: Geometric Modeling for Scientific Vi-
sualization, Springer, 2008, pp. 225–240.

[6] P. Novotny, L. Dimitrov, M. Sramek, Enhanced voxeliza-
tion and representation of objects with sharp details in
truncated distance fields, to be published in IEEE Trans-
actions on Visualization and Computer Graphics (2009).

[7] M. Eyiyurekli, C. Grimm, D. Breen, Editing level-set
models with sketched curves, in: Proceedings of Euro-
graphics/ACM Symposium on Sketch-Based Interfaces
and Modeling, 2009, pp. 45–52.

[8] A. Kaufman, D. Cohen, R. Yagel, Volume graphics, Com-
puter 26 (7) (1993) 51–64.

[9] T. Galyean, J. Hughes, Sculpting: An interactive volumet-
ric modeling technique, in: Proc. SIGGRAPH, 1991, pp.
267–274.

[10] K. L. Perng, W. T. Wang, M. Flanagan, M. Ouhyoung,
A real-time 3D virtual sculpting tool based on modified
marching cubes, International Conference on Artificial
Reality and Tele-Existence 11 (2001) 64–72.

[11] S. Wang, A. Kaufman, Volume sculpting, in: Proc. Sym-
posium on Interactive 3D Graphics, 1995, pp. 151–156.

[12] S. Wang, A. Kaufman, Volume-sampled 3D modeling,
IEEE Computer Graphics and Applications 14 (5) (1994)
26–32.

[13] E. Ferley, M.-P. Cani, J.-D. Gascuel, Practical volumetric
sculpting, The Visual Computer 16 (8) (2000) 469–480.

[14] E. Ferley, M.-P. Cani, J.-D. Gascuel, Resolution adaptive
volume sculpting, Graphical Models 63 (6) (2001) 459–
478.

[15] K. McDonnell, H. Qin, R. Wlodarczyk, Virtual clay: A
real-time sculpting system with haptic toolkits, in: Proc.

21

Symposium on Interactive 3D Graphics, 2001, pp. 179–
190.

[16] R. Blanch, E. Ferley, M.-P. Cani, J.-D. Gascuel, Non-
realistic haptic feedback for virtual sculpture, Tech. Rep.
RR-5090, INRIA, U.R. Rhone-Alpes (January 2004).

[17] S. Frisken, R. Perry, A. Rockwood, T. Jones, Adaptively
sampled distance fields: A general representation of shape
for computer graphics, in: Proc. SIGGRAPH, 2000, pp.
249–254.

[18] R. Perry, S. Frisken, Kizamu: A system for sculpting dig-
ital characters, in: Proc. SIGGRAPH, 2001, pp. 47–56.

[19] S. F. Frisken, R. N. Perry, Designing with distance fields,
in: ACM SIGGRAPH 2006 Course #2 Notes, 2006, pp.
60–66.

[20] M. Jones, J. Baerentzen, M. Sramek, 3D distance fields: A
survey of techniques and applications, IEEE Transactions
on Visualization and Computer Graphics 12 (4) (2006)
581–599.

[21] M. C. Leu, W. Zhang, Virtual sculpting with surface
smoothing based on level set method, CIRP Annals -
Manufacturing Technology 57 (2008) 167–170.

[22] [link].
URL http://www.3d-coat.com

[23] T. Sederberg, S. Parry, Free-form deformation of solid ge-
ometric models, in: Proc. SIGGRAPH, 1986, pp. 151–
160.

[24] K. Singh, E. Fiume, Wires: a geometric deformation tech-
nique, in: Proc. SIGGRAPH, 1998, pp. 405–414.

[25] H. Arata, Y. Takai, N. Takai, T. Yamamoto, Free-form
shape modeling by 3D cellular automata, in: Proc. In-
ternational Conference on Shape Modeling and Applica-
tions, 1999, pp. 242–247.

[26] J. Hua, H. Qin, Scalar-field guided adaptive shape defor-
mation and animation, The Visual Computer 20 (1) (2004)
47–66.

[27] A. Angelidis, G. Wyvill, M.-P. Cani, Sweepers: Swept
user-defined tools for modeling by deformation, in: Proc.
International Conference on Shape Modeling and Appli-
cations, 2004, pp. 63–73.

[28] A. Angelidis, M. Cani, G. Wyvill, S. King, Swirling-
sweepers: constant-volume modeling, Graphical Models
68 (4) (2006) 324–332.

[29] W. von Funck, H. Theisel, H.-P. Seidel, Vector field
based shape deformations, ACM Transactions on Graph-
ics (SIGGRAPH 2006) 25 (3) (2006) 1118–1125.

[30] W. von Funck, H. Theisel, H.-P. Seidel, Explicit control
of vector field based shape deformations, in: Proc. Pa-
cific Conference on Computer Graphics and Applications,
2007, pp. 291–300.

[31] K. McDonnell, H. Qin, PB-FFD: A point-based technique
for free-form deformation, Journal of Graphics Tools
12 (3) (2007) 25–41.

[32] J. Bloomenthal, et al. (Eds.), Introduction to Implicit Sur-
faces, Morgan Kaufmann, 1997.

[33] L. Velho, J. Gomes, L. H. de Figueiredo, Implicit Objects
in Computer Graphics, Springer, 2002.

[34] G. Wyvill, C. McPheeters, B. Wyvill, Data structures for
soft objects, The Visual Computer 2 (4) (1986) 227–234.

[35] B. Wyvill, C. McPheeters, G. Wyvill, Animating soft ob-
jects, The Visual Computer 2 (4) (1986) 235–242.

[36] B. Wyvill, G. Wyvill, Field functions for implicit surfaces,
The Visual Computer 5 (1&2) (1989) 75–82.

[37] A. Barr, Global and local deformations of solid primitives,
in: Proc. SIGGRAPH, 1984, pp. 21–30.

[38] B. Wyvill, E. Galin, A. Guy, Extending the CSG tree.
warping, blending and boolean operations in an im-
plicit surface modeling system, Computer Graphics Fo-
rum 18 (2) (1999) 149–158.

[39] J. Bloomenthal, B. Wyvill, Interactive techniques for im-
plicit modeling, Computer Graphics (Proc. 1990 Sympo-
sium on Interactive 3D Graphics) 24 (2) (1990) 109–116.

[40] R. Schmidt, B. Wyvill, E. Galin, Interactive implicit mod-
eling with hierarchical spatial caching, in: Proc. Interna-
tional Conference on Shape Modeling and Applications,
2005, pp. 104–113.

[41] R. Schmidt, B. Wyvill, Generalized sweep templates for
implicit modeling, in: Proc. 3rd International Conference
on Computer Graphics and Interactive Techniques in Aus-
tralasia and South East Asia (GRAPHITE ’05), 2005, pp.
187–196.

[42] R. Schmidt, B. Wyvill, M. Sousa, J. Jorge, Shapeshop:
Sketch-based solid modeling with blobtrees, in: Proc. 2nd
Eurographics Workshop on Sketch-Based Interfaces and
Modeling, 2005, pp. 53–62.

[43] M. Sugihara, E. de Groot, B. Wyvill, R. Schmidt, A
sketch-based method to control deformation in a skele-
tal implicit surface modeler, in: Proc. 5th Eurograph-
ics Workshop on Sketch-Based Interfaces and Modeling,
2008, pp. 65–72.

[44] M. Desbrun, M.-P. Cani, Animating soft substances with
implicit surfaces, in: Proc. SIGGRAPH, 1995, pp. 287–
290.

[45] M.-P. Cani, M. Desbrun, Animation of deformable mod-
els using implicit surfaces, IEEE Transactions on Visual-
ization and Computer Graphics 3 (1) (1997) 39–50.

[46] M. Desbrun, M.-P. Cani, Active implicit surface for ani-
mation, in: Proc. Graphics Interface, 1998, pp. 143–150.

[47] A. Angelidis, M.-P. Cani, Adaptive implicit modeling us-
ing subdivision curves and surfaces as skeletons, in: Proc.
Seventh ACM Symposium on Solid Modeling and Appli-
cations, 2002, pp. 45–52.

[48] A. Angelidis, P. Jepp, M.-P. Cani, Implicit modeling with
skeleton curves: Controlled blending in contact situa-
tions, in: Proc. Shape Modeling International Conference,
2002, pp. 137–144.

[49] S. Hornus, A. Angelidis, M.-P. Cani, Implicit modelling
using subdivision curves, The Visual Computer 19 (2-3)
(2003) 94–104.

[50] G. Turk, J. O’Brien, Modeling with implicit surfaces that
interpolate, ACM Transactions on Graphics 21 (4) (2002)
855–873.

[51] O. Karpenko, J. Hughes, R. Raskar, Free-form sketching

22

with variational implicit surfaces, Computer Graphics Fo-
rum 21 (3) (2002) 585–594.

[52] B. Araujo, J. Jorge, Blobmaker: Free-form modelling
with variational implicit surfaces, in: Proc. 12th Encon-
tro Portugues de Computacao Graca, 2003, pp. 17–26.

[53] C. L. Tai, H. Zhang, J. C.-K. Fong, Prototype modeling
from sketched silhouettes based on convolution surfaces,
Computer Graphics Forum 23 (1) (2004) 71–83.

[54] A. Alexe, V. Gaildrat, L. Barthe, Interactive modeling
from sketches using spherical implicit functions, in: Proc.
AFRIGRAPH ’04, 2004, pp. 25–34.

[55] R. Zeleznik, K. Herndon, J. Hughes, Sketch: an interface
for sketching 3D scenes, in: Proc. SIGGRAPH, 1996, pp.
163–170.

[56] T. Igarashi, S. Matsuoka, H. Tanaka, Teddy: A sketching
interface for 3-D freeform design., in: Proc. SIGGRAPH,
1999, pp. 409–416.

[57] T. Igarashi, J. Hughes, Smooth meshes for sketch-based
freeform modeling., in: Proc. ACM Symposium on Inter-
active 3D Graphics, 2003, pp. 139–142.

[58] A. Nealen, T. Igarashi, O. Sorkine, M. Alexa, Fibermesh:
designing freeform surfaces with 3D curves, ACM Trans-
actions on Graphics (SIGGRAPH 2007) 26 (3) (2007) 41.

[59] Y. Mori, T. Igarashi, Plushie: an interactive design sys-
tem for plush toys, ACM Transactions on Graphics (SIG-
GRAPH 2007) 26 (3) (2007) 45.

[60] J. Zimmermann, A. Nealen, M. Alexa, Silsketch: auto-
mated sketch-based editing of surface meshes, in: Proc.
4th Eurographics Workshop on Sketch-based Interfaces
and Modeling, 2007, pp. 23–30.

[61] J. Cherlin, F. Samavati, M. Sousa, J. Jorge, Sketch-based
modeling with few strokes, in: Proc. Spring Conference
on Computer Graphics, 2005, pp. 137–145.

[62] R. Schmidt, K. Singh, Sketch-based procedural surface
modeling and compositing using surface trees, Computer
Graphics Forum 27 (2) (2008) 321–330.

[63] S. Owada, F. Nielsen, K. Nakazawa, T. Igarashi, A sketch-
ing interface for modeling the internal structures of 3D
shapes, in: Proc. 4th International Symposium on Smart
Graphics, 2003, pp. 49–57.

[64] J. Baerentzen, N. Christensen, Volume sculpting using the
level-set method, in: Proc. International Conference on
Shape Modeling and Applications, 2002, pp. 175–182.

[65] K. Museth, D. Breen, R. Whitaker, A. Barr, Level set
surface editing operators, ACM Transactions on Graph-
ics (Proc. SIGGRAPH) 21 (3) (2002) 330–338.

[66] K. Museth, D. Breen, R. Whitaker, S. Mauch, D. John-
son, Algorithms for interactive editing of level set models,
Computer Graphics Forum 24 (4) (2005) 821–841.

[67] P. Mullen, A. McKenzie, Y. Tong, M. Desbrun, A varia-
tional approach to Eulerian geometry processing, ACM
Transactions on Graphics (SIGGRAPH 2007) 26 (3)
(2007) 66.

[68] J. Zhang, Y. Lihua, Surface representation using second,
fourth and mixed order partial differential equations, in:
Proc. International Conference on Shape Modeling and

Applications, 2001, pp. 250–256.
[69] H. Du, Interactive shape design using volumetric implicit

PDEs, in: Proc. ACM Symposium on Solid Modeling and
Applications, 2003, pp. 235–246.

[70] H. Du, H. Qin, A shape design system using volumetric
implicit PDEs, Computer Aided Design 36 (11) (2004)
1101–1116.

[71] H. Du, H. Qin, Dynamic PDE-based surface design us-
ing geometric and physical constraints, Graphical Models
67 (1) (2005) 43–71.

[72] H. Du, H. Qin, Free-form geometric modeling by integrat-
ing parametric and implicit PDEs, IEEE Transactions on
Visualization and Computer Graphics 13 (3) (2007) 549–
561.

[73] J. Lawrence, T. Funkhouser, A painting interface for in-
teractive surface deformations, Graphical Models 66 (6)
(2004) 418–438.

[74] M. Eyiyurekli, D. Breen, Localized editing of Catmull-
Rom splines, Computer-Aided Design and Applications
6 (3) (2009) 307–316.

[75] A. Barr, Superquadrics and angle-preserving transforma-
tions, IEEE Computer Graphics and Applications 1 (1)
(1981) 11–23.

[76] K. Singh, H. Pedersen, V. Krishnamurthy, Feature based
retargeting of parameterized geometry, in: Proc. Geomet-
ric Modeling and Processing, 2004, pp. 163–172.

[77] R. Whitaker, VISPACK, Tech. Rep. UUCS 08-0011,
School of Computing, University of Utah (2008).

[78] R. Whitaker, A level-set approach to 3D reconstruction
from range data, International Journal of Computer Vision
29 (3) (1998) 203–231.

[79] W. Lorensen, H. Cline, Marching Cubes: A high reso-
lution 3D surface construction algorithm, in: Proc. SIG-
GRAPH, 1987, pp. 163–169.

[80] J. Bloomenthal, An implicit surface polygonizer, in:
Graphics Gems IV, Academic Press, 1994, pp. 324–349.

[81] F. Losasso, F. Gibou, R. Fedkiw, Simulating water and
smoke with an octree data structure, ACM Transactions
on Graphics (SIGGRAPH 2004) 23 (3) (2004) 457–462.

[82] M. Nielsen, K. Museth, Dynamic tubular grid: An ef-
ficient data structure and algorithms for high resolution
level sets, Journal of Scientific Computing 26 (3) (2006)
261–299.

[83] B. Houston, M. Nielsen, C. Batty, O. Nilsson, K. Museth,
Hierarchical RLE level set: A compact and versatile de-
formable surface representation, ACM Transactions on
Graphics 25 (1) (2006) 151–175.

[84] X. Han, C. Xu, J. Prince, A topology preserving level set
method for geometric deformable models, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 25 (6)
(2003) 755–768.

[85] S. Bischoff, L. Kobbelt, Sub-voxel topology control for
level set surfaces, Computer Graphics Forum (Proc. Eu-
rographics 2003) 22 (3) (2003) 273–280.

[86] F. Ségonne, J. Pons, E. Grimson, B. Fischl, Active con-
tours under topology control - genus preserving level sets,

23

in: Proc. International Workshop on Computer Vision for
Biomedical Image Applications, 2005, pp. 135–145.

[87] M. Sugihara, E. de Groot, B. Wyvill, R. Schmidt, A
sketch-based method to control deformation in a skele-
tal implicit surface modeler, in: Proceedings of the 5th
Eurographics Workshop on Sketch-Based Interfaces and
Modeling, 2008, pp. 65–72.

8. APPENDIX

Algorithm 1 SweepGeodesic (xs, LIST, DIST) :
This algorithm computes a list of voxels within a ROI
along with their geodesic distances to a point xs.

{LIST is the list of voxels within the ROI.}
{DIST keeps the geodesic distances between the
voxels within the ROI and xs.}

for all voxels V in 1-Neighborhood of xs do
add V to LIST
add ‖V − xs‖ to DIST

end for

start = LIST.begin(), end=LIST.end()
for all voxels V in LIST [start : end] do

for all voxels VN in 1-Neighborhood of V do
if VN is a surface crossing voxel within ROI
then

if VN is NOT in LIST then
add VN to LIST
add DIST [V] + ‖V − VN‖ to DIST

else
if DIST [V] + ‖V − VN‖ < DIST [VN]
then

DIST [VN] = DIST [V]+‖V −VN‖
end if

end if
end if

end for
start = end, end=LIST.end()

end for

24

Operator Speed Function Result

Pulling a point,
symmetric ROI

F (x) =

{
cosα(π/2 ∗ ds(x)/r) ds(x) ≤ r

0 ds(x) > r
x: point on the surface being evaluated
ds(x): geodesic distance from the point x to the point being
dragged
α: user defined parameter that can be used to further control the
shape

Helping plane

Pulling a point,
arbitrary ROI

F (x) = f(dout(x)) ∗
(

max(dxs
in(x))−dxs

in(x)
max(dxs

in(x))

)α

f(d) =

(
1/2− 1/2 ∗ cos(π ∗ d(x)/ε) d ≤ ε

1.0 d > ε

dxs
in(x): geodesic distance to xs from x

dout(x): geodesic distance to the boundary curve from x

ε defines a transition region near the edge of the ROI.

Pulling a curve on
the surface,
symmetric ROI

F (x) =

{
(1.0− dcs

in(x)/r)α
dcs

in(x) ≤ r

0 dcs
in(x) > r

r: width of the ROI
dcs

in(x): geodesic distance between x and the curve Cs

α is defined above

Pulling a curve on
the surface,
arbitrary ROI

F (x) = f(dout(x)) ∗
(

max(dcs
in(x))−dcs

in(x)
max(dcs

in(x))

)α

dcs
in(x), dout(x), f() and α are defined above

Surface
Detailing/Carving

F (x) =

{
0 fse(V) > 0
β ∗ fse(V) fse(V) ≤ 0

The tool is centered at the cursor point xc

|V | = |x− xc|
fse(V) evaluates the superellipsoid inside-outside function around
the cursor location.
β = −1 surface detailing, β = +1 carving

Sketching
Cross-sections

F (x) = dup(x)
max(dup(x)) ∗ f(dout(x)) ∗(

max(dcs
in(x))−dcs

in(x)
max(dcs

in(x))

)α

dup distance(see Section 4.7 for calculation) to cross section curve
dout(x), dcs

in(x), f(), ε and α are defined above.

Interactive
Smoothing

F (x) = γ ∗ g(dg(x)) ∗ κ(x)

g(d) =

8><>:
1.0 d ≤ r − ε

1/2 + 1/2 ∗ cos(π ∗ (d− r + ε)/ε) r − ε < d ≤ r

0.0 d > r
γ: constant that controls the amount of smoothing
dg(x): Euclidean distance from the point x to the cursor xc

κ: mean curvature. r: radius of the smoothing tool
ε is defined above

Table 1: Free-form Editing Operators

25

Volume Resolution
(voxels)

Sphere Radius
(voxels)

ROI Radius
(voxels)

Speed
(fps)

643 20 5 333
1283 40 10 100
2563 80 20 12.5
5123 160 40 5
5123 160 10 100

Table 2: Running times of a single operation at different resolutions. The number of voxels within the ROI
gets four times bigger every time the radius of the ROI doubles. Running times are given in frames-per-second
(fps).

Editing Details Speed (fps)
Lake model, Dimensions: 161× 161× 101

Plants and rocks Pulling on a point, symmetric ROI 200
Surface on the rightmost plant Surface detailing 100-150

Log Surface Detailing 20
Animal (body) Sketch-based editing 12
Animal (eyes) Pulling on a curve, symmetric ROI 34

Animal (eyeballs) Surface Detailing 125
Mannequin Head, Dimensions: 360× 435× 510

Hair, eyes and eyebrows Surface Detailing 100-200
Horns Pulling on a point, symmetric ROI 100-200

Nose and ears Sketch-based editing 40
Chin Pulling on a curve, symmetric ROI 100

Octopus, Dimensions: 322× 322× 202
Body and arms Pulling on a point, symmetric ROI 20 (body) 200 (arms)

Head Sketch-based editing 25
Eyes Interactive carving 50
Nose Surface detailing 100

Teapot, Dimensions: 156× 232× 124
Erasing spout and top handle Interactive carving 25

New handles Pulling on a point, symmetric ROI 100
Cartoon frog, Dimensions: 401× 401× 401

Mouth Interactive Carving 10
Tongue Surface detailing 50

Eyes (balls) Pulling on a point, symmetric ROI 20
Eyes (crosses) Surface detailing 50

Cartoon bear, Dimensions: 320× 320× 600
Arms, claws and coat Surface detailing 50-150
Legs, ears and nose Pulling on a point, symmetric ROI 50-75

Eyes Interactive carving 50
Aneurysm, Dimensions: 621× 371× 346

Splitting veins Interactive carving 100
Connecting veins Pulling on a point, symmetric ROI 100

Table 3: Editing details and running times for the final results. Speed is in frames-per-second (fps).

26

